Artículos relacionados a Künstliche Intelligenz verstehen. Wie funktionieren...

Künstliche Intelligenz verstehen. Wie funktionieren die Methoden "Sensitivity Analysis" (SA) und "Layerwise Relevance Propagation" (LRP)? - Tapa blanda

 
9783346178886: Künstliche Intelligenz verstehen. Wie funktionieren die Methoden "Sensitivity Analysis" (SA) und "Layerwise Relevance Propagation" (LRP)?

Sinopsis

Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1.0, FernUniversität Hagen (Lehrstuhl für Parallelverarbeitung und IT-Sicherheit), Sprache: Deutsch, Abstract: Die Defense Advanced Research Projects Agency (DARPA) des Verteidigungsministeriums der Vereinigten Staaten von Amerika rief 2016 das Explainable Artificial Intelligence (XAI)-Programm ins Leben, mit dem Fokus, Techniken maschinellen Lernens zu entwickeln, die erstens erklärbare Modelle bei gleichbleibend hoher Lernfähigkeit erzeugen und zweitens den Menschen befähigen, AI-Systeme zu verstehen, ihnen angemessen zu vertrauen und die nächste Generation intelligenter Systeme kontrollieren zu können. Denn nur, wenn wir Menschen verstehen, wie KI-Systeme zu Entscheidungen gelangen, haben wir die Möglichkeit, sie mehrwertbringend in industriellen Prozessen anzuwenden und positiv in das tägliche Leben unserer Gesellschaft zu integrieren. Zielvorgabe der vorliegenden Arbeit ist die Darstellung und Analyse zweier Methoden, namentlich der Sensitivity Analysis (SA) und der Layerwise Relevance Propagation (LRP), deren eigene Zielsetzung es ist, die Entscheidungen intelligenter Systeme für den menschlichen Betrachter nachvollziehbar zu machen. Bevor jedoch auf die einzelnen Methoden, deren Funktionsweise und auf eine kritischen Betrachtung eingegangen werden kann, bedarf es einer Abgrenzung des Forschungsgebiets der XAI. Artificial Intelligence (AI) - ein populärer Begriff aktueller Zeit, der mit einer Vielzahl an technologischen Anwendungen in Verbindung gebracht wird. Manchmal prominent und tangibel in Form von menschenähnlichen Robotern, wieder andere Male subtil, weder sichtbar noch greifbar in Form von Algorithmen. Dabei ist die konzeptionelle Idee der Abbildung künstlicher Intelligenz durch Computersysteme keine neue Errungenschaft, sondern geht bis auf die Erkenntnisse von Warren McCulloch und Walter Pitts im Jahr 1943 zurück. McCulloch/Pitts (1943) offerierten ein Modell,

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialGRIN Verlag
  • Ańo de publicación2020
  • ISBN 10 3346178889
  • ISBN 13 9783346178886
  • EncuadernaciónTapa blanda
  • IdiomaAlemán
  • Número de edición1
  • Número de páginas32
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a Espańa

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Künstliche Intelligenz verstehen. Wie funktionieren...

Imagen del vendedor

Enzo Muschik
Publicado por GRIN Verlag Jun 2020, 2020
ISBN 10: 3346178889 ISBN 13: 9783346178886
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1.0, FernUniversität Hagen (Lehrstuhl für Parallelverarbeitung und IT-Sicherheit), Sprache: Deutsch, Abstract: Die Defense Advanced Research Projects Agency (DARPA) des Verteidigungsministeriums der Vereinigten Staaten von Amerika rief 2016 das Explainable Artificial Intelligence (XAI)-Programm ins Leben, mit dem Fokus, Techniken maschinellen Lernens zu entwickeln, die erstens erklärbare Modelle bei gleichbleibend hoher Lernfähigkeit erzeugen und zweitens den Menschen befähigen, AI-Systeme zu verstehen, ihnen angemessen zu vertrauen und die nächste Generation intelligenter Systeme kontrollieren zu können. Denn nur, wenn wir Menschen verstehen, wie KI-Systeme zu Entscheidungen gelangen, haben wir die Möglichkeit, sie mehrwertbringend in industriellen Prozessen anzuwenden und positiv in das tägliche Leben unserer Gesellschaft zu integrieren. Zielvorgabe der vorliegenden Arbeit ist die Darstellung und Analyse zweier Methoden, namentlich der Sensitivity Analysis (SA) und der Layerwise Relevance Propagation (LRP), deren eigene Zielsetzung es ist, die Entscheidungen intelligenter Systeme für den menschlichen Betrachter nachvollziehbar zu machen. Bevor jedoch auf die einzelnen Methoden, deren Funktionsweise und auf eine kritischen Betrachtung eingegangen werden kann, bedarf es einer Abgrenzung des Forschungsgebiets der XAI.Artificial Intelligence (AI) - ein populärer Begriff aktueller Zeit, der mit einer Vielzahl an technologischen Anwendungen in Verbindung gebracht wird. Manchmal prominent und tangibel in Form von menschenähnlichen Robotern, wieder andere Male subtil, weder sichtbar noch greifbar in Form von Algorithmen. Dabei ist die konzeptionelle Idee der Abbildung künstlicher Intelligenz durch Computersysteme keine neue Errungenschaft, sondern geht bis auf die Erkenntnisse von Warren McCulloch und Walter Pitts im Jahr 1943 zurück. McCulloch/Pitts (1943) offerierten ein Modell, das in Anlehnung an das biologische Vorbild künstliche Neuronen an- bzw. ausschaltet, je nach Stimulus durch benachbarte Neuronen. Dabei wird impliziert, dass durch ein Netzwerk künstlicher Neuronen ebenfalls die Möglichkeit der Lernfähigkeit bestünde. 32 pp. Deutsch. Nş de ref. del artículo: 9783346178886

Contactar al vendedor

Comprar nuevo

EUR 12,99
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a Espańa
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Ańadir al carrito

Imagen del vendedor

Enzo Muschik
Publicado por GRIN Verlag, 2020
ISBN 10: 3346178889 ISBN 13: 9783346178886
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1.0, FernUniversität Hagen (Lehrstuhl für Parallelverarbeitung und IT-Sicherheit), Sprache: Deutsch, Abstract: Die Defense Advanced Research Projects Agency (DARPA) des Verteidigungsministeriums der Vereinigten Staaten von Amerika rief 2016 das Explainable Artificial Intelligence (XAI)-Programm ins Leben, mit dem Fokus, Techniken maschinellen Lernens zu entwickeln, die erstens erklärbare Modelle bei gleichbleibend hoher Lernfähigkeit erzeugen und zweitens den Menschen befähigen, AI-Systeme zu verstehen, ihnen angemessen zu vertrauen und die nächste Generation intelligenter Systeme kontrollieren zu können. Denn nur, wenn wir Menschen verstehen, wie KI-Systeme zu Entscheidungen gelangen, haben wir die Möglichkeit, sie mehrwertbringend in industriellen Prozessen anzuwenden und positiv in das tägliche Leben unserer Gesellschaft zu integrieren. Zielvorgabe der vorliegenden Arbeit ist die Darstellung und Analyse zweier Methoden, namentlich der Sensitivity Analysis (SA) und der Layerwise Relevance Propagation (LRP), deren eigene Zielsetzung es ist, die Entscheidungen intelligenter Systeme für den menschlichen Betrachter nachvollziehbar zu machen. Bevor jedoch auf die einzelnen Methoden, deren Funktionsweise und auf eine kritischen Betrachtung eingegangen werden kann, bedarf es einer Abgrenzung des Forschungsgebiets der XAI.Artificial Intelligence (AI) - ein populärer Begriff aktueller Zeit, der mit einer Vielzahl an technologischen Anwendungen in Verbindung gebracht wird. Manchmal prominent und tangibel in Form von menschenähnlichen Robotern, wieder andere Male subtil, weder sichtbar noch greifbar in Form von Algorithmen. Dabei ist die konzeptionelle Idee der Abbildung künstlicher Intelligenz durch Computersysteme keine neue Errungenschaft, sondern geht bis auf die Erkenntnisse von Warren McCulloch und Walter Pitts im Jahr 1943 zurück. McCulloch/Pitts (1943) offerierten ein Modell, das in Anlehnung an das biologische Vorbild künstliche Neuronen an- bzw. ausschaltet, je nach Stimulus durch benachbarte Neuronen. Dabei wird impliziert, dass durch ein Netzwerk künstlicher Neuronen ebenfalls die Möglichkeit der Lernfähigkeit bestünde. Nş de ref. del artículo: 9783346178886

Contactar al vendedor

Comprar nuevo

EUR 12,99
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a Espańa
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Ańadir al carrito

Imagen del vendedor

Enzo Muschik
Publicado por GRIN Verlag Jun 2020, 2020
ISBN 10: 3346178889 ISBN 13: 9783346178886
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Studienarbeit aus dem Jahr 2020 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1.0, FernUniversität Hagen (Lehrstuhl für Parallelverarbeitung und IT-Sicherheit), Sprache: Deutsch, Abstract: Die Defense Advanced Research Projects Agency (DARPA) des Verteidigungsministeriums der Vereinigten Staaten von Amerika rief 2016 das Explainable Artificial Intelligence (XAI)-Programm ins Leben, mit dem Fokus, Techniken maschinellen Lernens zu entwickeln, die erstens erklärbare Modelle bei gleichbleibend hoher Lernfähigkeit erzeugen und zweitens den Menschen befähigen, AI-Systeme zu verstehen, ihnen angemessen zu vertrauen und die nächste Generation intelligenter Systeme kontrollieren zu können. Denn nur, wenn wir Menschen verstehen, wie KI-Systeme zu Entscheidungen gelangen, haben wir die Möglichkeit, sie mehrwertbringend in industriellen Prozessen anzuwenden und positiv in das tägliche Leben unserer Gesellschaft zu integrieren. Zielvorgabe der vorliegenden Arbeit ist die Darstellung und Analyse zweier Methoden, namentlich der Sensitivity Analysis (SA) und der Layerwise Relevance Propagation (LRP), deren eigene Zielsetzung es ist, die Entscheidungen intelligenter Systeme für den menschlichen Betrachter nachvollziehbar zu machen. Bevor jedoch auf die einzelnen Methoden, deren Funktionsweise und auf eine kritischen Betrachtung eingegangen werden kann, bedarf es einer Abgrenzung des Forschungsgebiets der XAI. Artificial Intelligence (AI) ż ein populärer Begriff aktueller Zeit, der mit einer Vielzahl an technologischen Anwendungen in Verbindung gebracht wird. Manchmal prominent und tangibel in Form von menschenähnlichen Robotern, wieder andere Male subtil, weder sichtbar noch greifbar in Form von Algorithmen. Dabei ist die konzeptionelle Idee der Abbildung künstlicher Intelligenz durch Computersysteme keine neue Errungenschaft, sondern geht bis auf die Erkenntnisse von Warren McCulloch und Walter Pitts im Jahr 1943 zurück. McCulloch/Pitts (1943) offerierten ein Modell, das in Anlehnung an das biologische Vorbild künstliche Neuronen an- bzw. ausschaltet, je nach Stimulus durch benachbarte Neuronen. Dabei wird impliziert, dass durch ein Netzwerk künstlicher Neuronen ebenfalls die Möglichkeit der Lernfähigkeit bestünde.Books on Demand GmbH, Überseering 33, 22297 Hamburg 32 pp. Deutsch. Nş de ref. del artículo: 9783346178886

Contactar al vendedor

Comprar nuevo

EUR 12,99
Convertir moneda
Gastos de envío: EUR 19,99
De Alemania a Espańa
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Ańadir al carrito

Imagen de archivo

Muschik, Enzo
Publicado por Grin Verlag, 2020
ISBN 10: 3346178889 ISBN 13: 9783346178886
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nş de ref. del artículo: I-9783346178886

Contactar al vendedor

Comprar nuevo

EUR 36,64
Convertir moneda
Gastos de envío: EUR 6,94
De Estados Unidos de America a Espańa
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Ańadir al carrito

Imagen del vendedor

Enzo Muschik
Publicado por GRIN Verlag, 2020
ISBN 10: 3346178889 ISBN 13: 9783346178886
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Künstliche Intelligenz verstehen. Wie funktionieren die Methoden "Sensitivity Analysis" (SA) und "Layerwise Relevance Propagation" (LRP)? | Enzo Muschik | Taschenbuch | 32 S. | Deutsch | 2020 | GRIN Verlag | EAN 9783346178886 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nş de ref. del artículo: 118723397

Contactar al vendedor

Comprar nuevo

EUR 12,99
Convertir moneda
Gastos de envío: EUR 55,00
De Alemania a Espańa
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Ańadir al carrito