"Sinopsis" puede pertenecer a otra edición de este libro.
Ke-Lin Du, PhD, is Affiliate Associate Professor at Concordia University, Montreal, Quebec, Canada, and Founder and CEO of Xonlink Inc, Ningbo, China.
M.N.S. Swamy, PhD, is Research Professor and Tier I Concordia Research Chair in the Department of Electrical and Computer Engineering at Concordia University, Montreal, Quebec, Canada.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,04 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includesdetailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics.Search and Optimization by Metaheuristicsis intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods. 456 pp. Englisch. Nº de ref. del artículo: 9783319822907
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Offers a comprehensive and state-of-the-art introduction to nature-inspired metaheuristicsIncludes detailed, implementable algorithmic flowcharts for the most popular algorithmsDiscusses over 100 diff. Nº de ref. del artículo: 448756937
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783319822907
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includesdetailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics.Search and Optimization by Metaheuristicsis intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods. Nº de ref. del artículo: 9783319822907
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783319822907_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 33170710-n
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783319822907
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783319822907
Cantidad disponible: 10 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 33170710
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 33170710-n
Cantidad disponible: Más de 20 disponibles