This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ɛ tends to zero.
One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized.
The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis,partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is concerned with the study in two dimensions of stationary solutions of u? of a complex valued Ginzburg-Landau equation involving a small parameter ?. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ? has a dimension of a length which is usually small. Thus, it is of great interest to study the asymptotics as ? tends to zero.
One of the main results asserts that the limit u-star of minimizers u? exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized.
The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy. The location of the singularities is completely determined by minimizing the renormalized energy among all possible configurations of defects.The limit u-star can also be viewed as a geometrical object. It is a minimizing harmonic map into S1 with prescribed boundary condition g. Topological obstructions imply that every map u into S1 with u = g on the boundary must have infinite energy. Even though u-star has infinite energy, one can think of u-star as having “less” infinite energy than any other map u with u = g on the boundary.
The material presented in this book covers mostly original results by the authors. It assumes a moderate knowledge of nonlinear functional analysis, partial differential equations, and complex functions. This book is designed for researchers and graduate students alike, and can be used as a one-semester text. The present softcover reprint is designed to make this classic text available to a wider audience."...the book gives a very stimulating account of an interesting minimization problem. It can be a fruitful source of ideas for those who work through the material carefully."
- Alexander Mielke, Zeitschrift für angewandte Mathematik und Physik 46(5)
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,61 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9783319666723
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 192 pages. 9.25x6.10x0.46 inches. In Stock. Nº de ref. del artículo: __331966672X
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Affordable, softcover reprint of a classic textbookAuthors are well-known specialists in nonlinear functional analysis and partial differential equationsWritten in a clear, readable style with many examplesThis book is concerned . Nº de ref. del artículo: 155914773
Cantidad disponible: Más de 20 disponibles