Artículos relacionados a Educational Data Mining: Applications and Trends: 524...

Educational Data Mining: Applications and Trends: 524 (Studies in Computational Intelligence) - Tapa dura

 
9783319027371: Educational Data Mining: Applications and Trends: 524 (Studies in Computational Intelligence)

Sinopsis

This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows:

·     Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education.

·     Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click.

·     Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data.

·     Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks.

This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.

"Sinopsis" puede pertenecer a otra edición de este libro.

De la contraportada

This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows:

· Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education.

· Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the students academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click.

· Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data.

· Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks.

This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2013
  • ISBN 10 3319027379
  • ISBN 13 9783319027371
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas488
  • EditorPeña-Ayala Alejandro

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,61 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783319344997: Educational Data Mining: Applications and Trends: 524 (Studies in Computational Intelligence)

Edición Destacada

ISBN 10:  3319344994 ISBN 13:  9783319344997
Editorial: Springer, 2016
Tapa blanda

Resultados de la búsqueda para Educational Data Mining: Applications and Trends: 524...

Imagen del vendedor

Peña-Ayala, Alejandro
Publicado por Springer International Publishing, 2013
ISBN 10: 3319027379 ISBN 13: 9783319027371
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides an updated view of the application of Data Mining to the educational arena Copes two key targets: applications and trends Focuses on the Data Mining logistics: models, tasks, methods, algorithmsThis book is devoted to th. Nº de ref. del artículo: 4496524

Contactar al vendedor

Comprar nuevo

EUR 137,26
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Alejandro Peña-Ayala
ISBN 10: 3319027379 ISBN 13: 9783319027371
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks.This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining. 488 pp. Englisch. Nº de ref. del artículo: 9783319027371

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Alejandro Peña-Ayala
Publicado por Springer International Publishing, 2013
ISBN 10: 3319027379 ISBN 13: 9783319027371
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks.This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledgeand find targets for future work in the field of educational data mining. Nº de ref. del artículo: 9783319027371

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2013
ISBN 10: 3319027379 ISBN 13: 9783319027371
Antiguo o usado Tapa dura

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79733190273796

Contactar al vendedor

Comprar usado

EUR 232,97
Convertir moneda
Gastos de envío: EUR 29,61
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito