Artículos relacionados a Number Systems for Deep Neural Network Architectures...

Number Systems for Deep Neural Network Architectures (Synthesis Lectures on Engineering, Science, and Technology) - Tapa dura

 
9783031381324: Number Systems for Deep Neural Network Architectures (Synthesis Lectures on Engineering, Science, and Technology)

Sinopsis

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ghada Alsuhli received her B.S. and M.S. degrees in electronics and communication engineering from Damascus University, Syria, in 2009 and 2015, respectively. She obtained her Ph.D. degree in electronics and communication engineering from Cairo University, Egypt, in 2019. Throughout her academic journey, she has been actively involved in research at esteemed institutions such as the National Research Center in Egypt, The American University in Cairo, Egypt, and the SOC Center at Khalifa University, UAE. Currently, Ghada holds the position of Post-Doctoral Researcher at Khalifa University, UAE, where she focuses on the design and implementation of Artificial Intelligence accelerators. Her research interests encompass a wide range of areas, including Artificial Intelligence applications in wireless communications, airborne and ground ad-hoc networks, and biomedical engineering.

Vasilis Sakellariou received his Bachelor/Master Degree in Electrical Engineering and Computer Science in University of Patras, Greece, in 2015. He is currently pursuing his PhD title in Khalifa University in Abu Dhabi. During his master he specialized in the field of microelectronics, embedded systems, integrated circuits and VLSI design, while his thesis involved designing hardware accelerators for neuromorphic computing. His current research interests are focused on designing low-power accelerators for edge-AI devices by employing non-conventional arithmetic systems, with emphasis on the Residue Numbering System, as well as emerging in-memory computing paradigms.

Hani Saleh is an associate professor of electronic engineering at Khalifa University since 2017, he joined Khalifa as assistant professor on 2012. He was a co-founder of the KSRC (Khalifa University Research Center 2012-2018) and a co-founder and a theme-lead in the System on Chip Research Center (SOCC 2019-present) where he led multiple IoT projects for the development of wearable blood glucose monitoring SOC, mobile surveillance SOC and AI Accelerators for edge devices. Hani has a total of 19 years of industrial experience in ASIC chip design, microprocessor design, DSP core design, graphics core design and embedded system design. Prior to joining Khalifa University he worked for many leading semiconductor design companies including a Senior Chip Designer (Technical Lead) at Apple incorporation, Intel (ATOM mobile microprocessor design), AMD (Bobcat mobile microprocessor design), Qualcomm (QDSP DSP core design for mobile SOC’s), Synopsys (designed the I2C DW IP included in Synopys DesignWare library), Fujitsu (SPARC compatible high performance microprocessor design) and Motorola Australia. Hani received a Bachelor of Science degree in Electrical Engineering from the University of Jordan, a Master of Science degree in Electrical Engineering from the University of Texas at San Antonio, and a Ph.D. degree in Computer Engineering from the University of Texas at Austin.

Mahmoud Al-Qutayri is Professor of Electrical and Computer Engineering and the Associate Provost for Academic Operations at Khalifa University (KU), UAE. He is also affiliated with KU System-on-Chip Center, which focuses on the design of high performance and energy efficient electronic devices and systems for a wide range of applications. Prior to joining Khalifa University, he worked at De Montfort University, UK, and the University of Bath, UK. He also worked at Philips Semiconductors, Southampton, UK. Dr. Al-Qutayri has authored or coauthored numerous technical papers in peer-reviewed journals and international conferences. He has also coauthored a book entitled Digital Phase Lock Loops: Architectures and Applications and has edited a book entitled Smart Home Systems. This is in addition to a number of book chapters and patents. His current research interests include embedded systems, in-memory computing and emerging memory technologies, energy efficient IoT systems, efficient edge computing and artificial intelligence hardware implementation, application of AI to wireless communication systems, wireless sensor networks, and cognitive wireless networks. He received a number of awards during his undergraduate and graduate education and professional career. His professional services include serving on the editorial board of some journals as well as membership of the steering, organizing, and technical program committees of many international conferences.

Baker Mohammad is the director of System on Chip center and professor of EECS at Khalifa University. Dr. Mohammad is a senior member of IEEE,  IEEE distinguished lecture on Circuit and System chapter for 2023-2024 and a member of the Mohammed bin Rashid Academy of Scientists. Prior to joining Khalifa University, he was a Senior Staff Engineer/Manager at Qualcomm, Austin, Tx, USA, for 6-years, where he was engaged in designing high-performance and low-power DSP processors used for communication and multi-media application. Before joining Qualcomm, he worked for 10 years at Intel Corporation on a wide range of microprocessors design from high-performance, server chips > 100Watt (IA-64), to mobile embedded processor low power sub 1 watt (xscale). He has over 16 years of industrial experience in microprocessor design, emphasizing memory, low power circuit, and physical design. Baker earned his Ph.D. from the University of Texas at Austin in 2008, his M.S. degree from Arizona State University, Tempe, and BS degree from the University of New Mexico, Albuquerque, all in ECE. Hi^3 books, >18 US patents, multiple invited seminars/panelists, and the presenter of >3 conference tutorials, including one tutorial on Energy harvesting and Power management for WSN at the 2015 (ISCAS). Baker is an associate editor for IEEE Access, IEEE Transaction on VLSI (TVLSI), and Scientific Reports journals. Dr Mohammad participates in many technical committees at IEEE conferences and reviews for TVLSI,IEEE Circuits and Systems journals. He has received several awards, including the KUSTAR staff excellence award in intellectual property creation, IEEE TVLSI best paper award, 2016 IEEE MWSCAS Myrill B. Reed best paper award, Qualcomm Qstar award for excellence on performance and leadership. SRC Techon best session papers for 2016 and 2017. 2009 Best paper award for Qualcomm Qtech conference and Intel Involve in the community award for volunteer and impact on the community.

Thanos Stouraitis is an IEEE Life Fellow for his “contributions in digital signal processing architectures and computer arithmetic,” is Professor of the Department of Electrical Engineering and Computer Science of Khalifa University, UAE. He is also Professor Emeritus of the University Patras, and has served on the faculties of Ohio State University, University of Florida, New York University, and University of British Columbia. He served on the National Scientific Board for Mathematics and Informatics of Greece and was a founding Council member of the University of Central Greece. He holds a Ph.D. from the University of Florida. 
His current research interests include AI hardware systems, signal and image processing systems, computer arithmetic, and design and architecture of optimal digital systems with emphasis on cryptographic systems. He has authored about 200 technical papers, several book chapters, and holds several patents on DSP processor design. He has authored the Univ. of Patras Press book "Digital Signal Processing," and co-authored the Marcel Dekker Inc. book "Digital Filter Design Software for the IBM PC," and the 2017 Wiley-IEEE Press book “Arithmetic Circuits for DSP Applications”. He has led several processor design projects funded by European Union and American organizations.
He has served as Editor or Guest Editor for numerous technical journals, including IEEE Trans. on Computers, Trans. on Circuits and Systems, Trans. on VLSI, etc. He served as General Chair and/or Technical Program Committee Chair for many international conferences, like IEEE ISCAS, AICAS, SiPS, ICECS, GlobeCom, etc. He received the IEEE Circuits and Systems Society Guillemin-Cauer Award. He has served IEEE in many ways, including as President, during 2012-13, of IEEE Circuits and Systems Society.

De la contraportada

This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Excelente
Zustand: Sehr gut | Seiten: 108...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 11,58 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783031381355: Number Systems for Deep Neural Network Architectures (Synthesis Lectures on Engineering, Science, and Technology)

Edición Destacada

ISBN 10:  3031381351 ISBN 13:  9783031381355
Editorial: Springer, 2024
Tapa blanda

Resultados de la búsqueda para Number Systems for Deep Neural Network Architectures...

Imagen de archivo

Ghada Alsuhli, Vasilis Sakellariou, Thanos Stouraitis, Mahmoud Al-Qutayri, Baker Mohammad, Hani Saleh
Publicado por Springer Nature Switzerland, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 42308046/2

Contactar al vendedor

Comprar usado

EUR 30,59
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Ghada Alsuhli, Vasilis Sakellariou, Thanos Stouraitis, Mahmoud Al-Qutayri, Baker Mohammad, Hani Saleh
Publicado por Springer Nature Switzerland, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 42308046/1

Contactar al vendedor

Comprar usado

EUR 30,59
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ghada Alsuhli, Vasilis Sakellariou, Thanos Stouraitis, Mahmoud Al-Qutayri, Baker Mohammad, Hani Saleh
Publicado por Springer Nature Switzerland, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Gut. Zustand: Gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 42308046/3

Contactar al vendedor

Comprar usado

EUR 30,59
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Alsuhli, Ghada/ Sakellariou, Vasilis/ Saleh, Hani/ Al-qutayri, Mahmoud/ Mohammad, Baker
Publicado por Springer Nature, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Brand New. 105 pages. 9.45x6.61x0.55 inches. In Stock. Nº de ref. del artículo: 3031381327

Contactar al vendedor

Comprar nuevo

EUR 34,05
Convertir moneda
Gastos de envío: EUR 11,58
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ghada Alsuhli
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP),Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS).The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them. 108 pp. Englisch. Nº de ref. del artículo: 9783031381324

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ghada Alsuhli
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP),Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS).The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them. Nº de ref. del artículo: 9783031381324

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ghada Alsuhli|Vasilis Sakellariou|Hani Saleh|Mahmoud Al-Qutayri|Baker Mohammad|Thanos Stouraitis
Publicado por Springer Nature Switzerland, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Explores different design aspects associated with each number system and their effects on DNN performanceDiscusses the most efficient number systems for DNNs hardware realizationDescribes various number systems and their usage for Deep Neur. Nº de ref. del artículo: 888374601

Contactar al vendedor

Comprar nuevo

EUR 48,37
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Alsuhli, Ghada; Sakellariou, Vasilis; Saleh, Hani; Al-Qutayri, Mahmoud; Mohammad, Baker; Stouraitis, Thanos
Publicado por Springer, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26396413994

Contactar al vendedor

Comprar nuevo

EUR 73,08
Convertir moneda
Gastos de envío: EUR 9,82
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Alsuhli, Ghada; Sakellariou, Vasilis; Saleh, Hani; Al-Qutayri, Mahmoud; Mohammad, Baker; Stouraitis, Thanos
Publicado por Springer, 2023
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 399995893

Contactar al vendedor

Comprar nuevo

EUR 75,18
Convertir moneda
Gastos de envío: EUR 10,25
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Ghada Alsuhli
ISBN 10: 3031381327 ISBN 13: 9783031381324
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book provides readers a comprehensive introduction to alternative number systems for more efficient representations of Deep Neural Network (DNN) data. Various number systems (conventional/unconventional) exploited for DNNs are discussed, including Floating Point (FP), Fixed Point (FXP), Logarithmic Number System (LNS), Residue Number System (RNS), Block Floating Point Number System (BFP), Dynamic Fixed-Point Number System (DFXP) and Posit Number System (PNS). The authors explore the impact of these number systems on the performance and hardware design of DNNs, highlighting the challenges associated with each number system and various solutions that are proposed for addressing them.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 108 pp. Englisch. Nº de ref. del artículo: 9783031381324

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda