Artículos relacionados a Computational Methods for Deep Learning: Theoretic,...

Computational Methods for Deep Learning: Theoretic, Practice and Applications (Texts in Computer Science) - Tapa blanda

 
9783030610838: Computational Methods for Deep Learning: Theoretic, Practice and Applications (Texts in Computer Science)

Sinopsis

Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.

Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.

As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.

This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.

Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.       


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Dr. Wei Qi Yan received a doctorate degree of computer engineering from the Chinese Academy of Sciences, Beijing, China in 2001, he moved to the School of Computing (SoC), National University of Singapore, and worked as a Research Fellow, later as a regular faculty member from 2003 to 2005. In 2005, he joined the Columbia University in New York City, USA, as a Research Scholar. He moved to the University of California, Irvine USA in 2006. He joined the Queen’s University Belfast (Russell Group UK), as a Lecturer in 2007 and moved to the Auckland University of Technology (AUT), New Zealand in 2011; he is the Director of Computer and Cyber Security (CCS) Research Group since 2011 and the Deputy Director of CeRV (Robotics & Vision) research centre since 2015, the Director of CeRV from 2019.

Dr. Yan has contributed to 13 granted research proposals. He has co-authored 13 research books as well as over 230 publications (J: 80+) with more than 2,900 Google citations, one of his research papers has been cited over 700 times. His publications have been accepted or appeared in the ACM and IEEE journals and conferences. Dr. Yan’s research distinctions at AUT include deep learning, intelligent surveillance, currency security, visual cryptography, digital event computing, intelligent navigations, etc. Dr. Yan is a regular reviewer of Ph.D. theses of AUT, the Massey University, the University of Canterbury, the University of Auckland (UoA), New Zealand, and the Nanyang Technological University (NTU), Singapore.

Dr. Yan’s services have included being a TPC member of all the top ACM and IEEE conferences in his research area, Track Chair of IEEE VCIP 2020 and IEEE ICME 2020, Publication Chair of IAPR ACPR 2019, Program Chair of IEEE AVSS 2018, General Chair of ISGV2021 and IWDW 2013, and Program Chair of WSVS 2015 and IWDCF 2015/2016/2017. Dr. Yan has delivered over 100 talks around the world, and his visit to the Chinese Academy of Sciences China was sponsoredby the Royal Society of New Zealand (RSNZ), Ministry of Science and Technology (MOST) China in 2013. He is an Adjunct Professor of the Chinese Academy of Sciences, China, with Ph.D. supervision. Dr. Yan was a Visiting Professor of the University of Auckland (UoA), the Massey University, and the National University of Singapore (NUS).

Dr. Yan is serving as the Editor-in-Chief (EiC) of the International Journal Digital Crime Forensics (IJDCF) from 2014 to 2019, now an Editor-inChief Emeritus; a Guest Editor of the Springer Transactions on Data Hiding and Multimedia Security (DHMS), a book reviewer of John Wiley and Sons, IGI global, and a proposal reviewer of Ministry of Business, Innovation, and Employment (MBIE) of New Zealand. He is also a member of the ACM, the Chair of ACM New Zealand chapter in Multimedia, a senior member of the IEEE, TC members of the IEEE, and a Fellow of the Higher Education Academy (FHEA), UK.

Dr. Wei Qi Yan is an Associate Professor with the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer books: Visual Cryptography for Image Processing and Security;  Introduction to Intelligent Surveillance.


De la contraportada

<p>Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.</p><p>Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.</p><p>As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.</p><p>This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.</p><p><b>Dr. Wei Qi Yan</b> is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, <i>Visual Cryptography for Image Processing and Security</i>.&nbsp; &nbsp; &nbsp; &nbsp;</p><br><p></p>

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2021
  • ISBN 10 3030610837
  • ISBN 13 9783030610838
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición1
  • Número de páginas152
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 10,10 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783030610807: Computational Methods for Deep Learning: Theoretic, Practice and Applications (Texts in Computer Science)

Edición Destacada

ISBN 10:  3030610802 ISBN 13:  9783030610807
Editorial: Springer, 2020
Tapa dura

Resultados de la búsqueda para Computational Methods for Deep Learning: Theoretic,...

Imagen de archivo

Wei Qi Yan
Publicado por Springer, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26390225112

Contactar al vendedor

Comprar nuevo

EUR 58,77
Convertir moneda
Gastos de envío: EUR 10,10
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Qi Yan Wei
Publicado por Springer, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 389407495

Contactar al vendedor

Comprar nuevo

EUR 59,06
Convertir moneda
Gastos de envío: EUR 10,54
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wei Qi Yan
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.Dr. Wei Qi Yanis an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title,Visual Cryptography for Image Processing and Security. 152 pp. Englisch. Nº de ref. del artículo: 9783030610838

Contactar al vendedor

Comprar nuevo

EUR 64,19
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Qi Yan Wei
Publicado por Springer, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18390225106

Contactar al vendedor

Comprar nuevo

EUR 60,90
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wei Qi Yan
Publicado por Springer International Publishing, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.Dr. Wei Qi Yanis an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title,Visual Cryptography for Image Processing and Security. Nº de ref. del artículo: 9783030610838

Contactar al vendedor

Comprar nuevo

EUR 64,19
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Yan, Wei Qi
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine int. Nº de ref. del artículo: 525691931

Contactar al vendedor

Comprar nuevo

EUR 57,59
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Yan, Wei Qi
Publicado por Springer, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030610838_new

Contactar al vendedor

Comprar nuevo

EUR 73,52
Convertir moneda
Gastos de envío: EUR 4,74
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

YAN
Publicado por Springer, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Tapa blanda

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-325311

Contactar al vendedor

Comprar nuevo

EUR 58,87
Convertir moneda
Gastos de envío: EUR 26,34
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Wei Qi Yan
Publicado por Springer 2021-12-05, 2021
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Paperback

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783030610838

Contactar al vendedor

Comprar nuevo

EUR 71,09
Convertir moneda
Gastos de envío: EUR 17,85
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Wei Qi Yan
ISBN 10: 3030610837 ISBN 13: 9783030610838
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Integrating concepts from deep learning, machine learning, and artificial neural networks, this highly unique textbook presents content progressively from easy to more complex, orienting its content about knowledge transfer from the viewpoint of machine intelligence. It adopts the methodology from graphical theory, mathematical models, and algorithmic implementation, as well as covers datasets preparation, programming, results analysis and evaluations.Beginning with a grounding about artificial neural networks with neurons and the activation functions, the work then explains the mechanism of deep learning using advanced mathematics. In particular, it emphasizes how to use TensorFlow and the latest MATLAB deep-learning toolboxes for implementing deep learning algorithms.As a prerequisite, readers should have a solid understanding especially of mathematical analysis, linear algebra, numerical analysis, optimizations, differential geometry, manifold, and information theory, as well as basic algebra, functional analysis, and graphical models. This computational knowledge will assist in comprehending the subject matter not only of this text/reference, but also in relevant deep learning journal articles and conference papers.This textbook/guide is aimed at Computer Science research students and engineers, as well as scientists interested in deep learning for theoretic research and analysis. More generally, this book is also helpful for those researchers who are interested in machine intelligence, pattern analysis, natural language processing, and machine vision.Dr. Wei Qi Yan is an Associate Professor in the Department of Computer Science at Auckland University of Technology, New Zealand. His other publications include the Springer title, Visual Cryptography for Image Processing and Security.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. Nº de ref. del artículo: 9783030610838

Contactar al vendedor

Comprar nuevo

EUR 64,19
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda