Artículos relacionados a Deep Learning in Medical Image Analysis: Challenges...

Deep Learning in Medical Image Analysis: Challenges and Applications - Tapa blanda

 
9783030331290: Deep Learning in Medical Image Analysis: Challenges and Applications

Esta edición ISBN ya no está disponible.

Sinopsis

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2020
  • ISBN 10 3030331296
  • ISBN 13 9783030331290
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas192
  • EditorLee Gobert, Fujita Hiroshi
  • Contacto del fabricanteno disponible

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9783030331276: Deep Learning in Medical Image Analysis: Challenges and Applications: 1213 (Advances in Experimental Medicine and Biology)

Edición Destacada

ISBN 10:  303033127X ISBN 13:  9783030331276
Editorial: Springer, 2020
Tapa dura