Artículos relacionados a Strength or Accuracy: Credit Assignment in Learning...

Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Distinguished Dissertations) - Tapa dura

 
9781852337704: Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Distinguished Dissertations)

Sinopsis

Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi­ tion/action rules. Inreinforcement learning tasks they simultaneously address the two major problems of learning a policy and generalising over it (and re­ lated objects, such as value functions). Despite over 20 years of research, however, classifier systems have met with mixed success, for reasons which were often unclear. Finally, in 1995 Stewart Wilson claimed a long-awaited breakthrough with his XCS system, which differs from earlier classifier sys­ tems in a number of respects, the most significant of which is the way in which it calculates the value of rules for use by the rule generation system. Specifically, XCS (like most classifiersystems) employs a genetic algorithm for rule generation, and the way in whichit calculates rule fitness differsfrom earlier systems. Wilson described XCS as an accuracy-based classifiersystem and earlier systems as strength-based. The two differin that in strength-based systems the fitness of a rule is proportional to the return (reward/payoff) it receives, whereas in XCS it is a function of the accuracy with which return is predicted. The difference is thus one of credit assignment, that is, of how a rule’s contribution to the system’s performance is estimated. XCS is a Q­ learning system; in fact, it is a proper generalisation of tabular Q-learning, in which rules aggregate states and actions. In XCS, as in other Q-learners, Q-valuesare used to weightaction selection.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

From the reviews:

"This book is a monograph on learning classifier systems ... . The main objective of the book is to compare strength-based classifier systems with accuracy-based systems. ... The book is equipped with nine appendices. ... The biggest advantage of the book is its readability. The book is well written and is illustrated with many convincing examples." (Jerzy W. Grzymal-Busse, Mathematical Reviews, Issue 2005 k)

Reseña del editor

Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi­ tion/action rules. Inreinforcement learning tasks they simultaneously address the two major problems of learning a policy and generalising over it (and re­ lated objects, such as value functions). Despite over 20 years of research, however, classifier systems have met with mixed success, for reasons which were often unclear. Finally, in 1995 Stewart Wilson claimed a long-awaited breakthrough with his XCS system, which differs from earlier classifier sys­ tems in a number of respects, the most significant of which is the way in which it calculates the value of rules for use by the rule generation system. Specifically, XCS (like most classifiersystems) employs a genetic algorithm for rule generation, and the way in whichit calculates rule fitness differsfrom earlier systems. Wilson described XCS as an accuracy-based classifiersystem and earlier systems as strength-based. The two differin that in strength-based systems the fitness of a rule is proportional to the return (reward/payoff) it receives, whereas in XCS it is a function of the accuracy with which return is predicted. The difference is thus one of credit assignment, that is, of how a rule's contribution to the system's performance is estimated. XCS is a Q­ learning system; in fact, it is a proper generalisation of tabular Q-learning, in which rules aggregate states and actions. In XCS, as in other Q-learners, Q-valuesare used to weightaction selection.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Excelente
First Edition, hardcover. 307 pages...
Ver este artículo

EUR 4,26 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 7,66 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781447110583: Strength or Accuracy: Credit Assignment in Learning Classifier Systems: Credit Assignment in Learning Classifier Systems (Distinguished Dissertations)

Edición Destacada

ISBN 10:  1447110587 ISBN 13:  9781447110583
Editorial: Springer, 2012
Tapa blanda

Resultados de la búsqueda para Strength or Accuracy: Credit Assignment in Learning...

Imagen de archivo

Kovacs, Tim
Publicado por New York: Springer-Verlag, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Antiguo o usado Tapa dura Original o primera edición

Librería: Silicon Valley Fine Books, Sunnyvale, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Fine. First Edition, hardcover. 307 pages. Fine, a very sharp copy with a few light pressure marks on cover. Nº de ref. del artículo: C17812

Contactar al vendedor

Comprar usado

EUR 46,38
Convertir moneda
Gastos de envío: EUR 4,26
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781852337704

Contactar al vendedor

Comprar nuevo

EUR 148,32
Convertir moneda
Gastos de envío: EUR 7,66
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 2146228-n

Contactar al vendedor

Comprar nuevo

EUR 153,88
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar2912160256813

Contactar al vendedor

Comprar nuevo

EUR 157,22
Convertir moneda
Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781852337704_new

Contactar al vendedor

Comprar nuevo

EUR 158,43
Convertir moneda
Gastos de envío: EUR 13,74
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 2146228-n

Contactar al vendedor

Comprar nuevo

EUR 158,42
Convertir moneda
Gastos de envío: EUR 17,20
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Tim Kovacs
Publicado por Springer London Ltd, England, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: new. Hardcover. The Distinguished Dissertations series is published on behalf of the Conference of Professors and Heads of Computing and the British Computer Society, who annually select the best British PhD dissertations in computer science for publication. The dissertations are selected on behalf of the CPHC by a panel of eight academics. Each dissertation chosen makes a noteworthy contribution to the subject and reaches a high standard of exposition, placing all results clearly in the context of computer science as a whole. In this way computer scientists with significantly different interests are able to grasp the essentials - or even find a means of entry - to an unfamiliar research topic. Machine learning promises both to create machine intelligence and to shed light on natural intelligence. A fundamental issue for either endevour is that of credit assignment, which we can pose as follows: how can we credit individual components of a complex adaptive system for their often subtle effects on the world? For example, in a game of chess, how did each move (and the reasoning behind it) contribute to the outcome?This text studies aspects of credit assignment in learning classifier systems, which combine evolutionary algorithms with reinforcement learning methods to address a range of tasks from pattern classification to stochastic control to simulation of learning in animals. Credit assignment in classifier systems is complicated by two features: 1) their components are frequently modified by evolutionary search, and 2) components tend to interact. Classifier systems are re-examined from first principles and the result is, primarily, a formalization of learning in these systems, and a body of theory relating types of classifier systems, learning tasks, and credit assignment pathologies. Most significantly, it is shown that both of the main approaches have difficulties with certain tasks, which the other type does not. Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi tion/action rules. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781852337704

Contactar al vendedor

Comprar nuevo

EUR 180,07
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Kovacs, Tim
Publicado por Springer, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 2146228

Contactar al vendedor

Comprar usado

EUR 179,62
Convertir moneda
Gastos de envío: EUR 2,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Tim Kovacs
Publicado por Springer London Jan 2004, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classifier systems are an intriguing approach to a broad range of machine learning problems, based on automated generation and evaluation of condi tion/action rules. Inreinforcement learning tasks they simultaneously address the two major problems of learning a policy and generalising over it (and re lated objects, such as value functions). Despite over 20 years of research, however, classifier systems have met with mixed success, for reasons which were often unclear. Finally, in 1995 Stewart Wilson claimed a long-awaited breakthrough with his XCS system, which differs from earlier classifier sys tems in a number of respects, the most significant of which is the way in which it calculates the value of rules for use by the rule generation system. Specifically, XCS (like most classifiersystems) employs a genetic algorithm for rule generation, and the way in whichit calculates rule fitness differsfrom earlier systems. Wilson described XCS as an accuracy-based classifiersystem and earlier systems as strength-based. The two differin that in strength-based systems the fitness of a rule is proportional to the return (reward/payoff) it receives, whereas in XCS it is a function of the accuracy with which return is predicted. The difference is thus one of credit assignment, that is, of how a rule's contribution to the system's performance is estimated. XCS is a Q learning system; in fact, it is a proper generalisation of tabular Q-learning, in which rules aggregate states and actions. In XCS, as in other Q-learners, Q-valuesare used to weightaction selection. 328 pp. Englisch. Nº de ref. del artículo: 9781852337704

Contactar al vendedor

Comprar nuevo

EUR 160,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Tim Kovacs
Publicado por Springer London, 2004
ISBN 10: 1852337702 ISBN 13: 9781852337704
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. There are few texts that deal with learning classifier systems at all most include only a chapter or two on them, and are out of dateThe study of learning classifier systems has made great progress in the last few years, and is an increasingly ac. Nº de ref. del artículo: 4289774

Contactar al vendedor

Comprar nuevo

EUR 136,16
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda