Artículos relacionados a Strength or Accuracy: Credit Assignment in Learning...

Strength or Accuracy: Credit Assignment in Learning Classifier Systems - Tapa blanda

 
9780857294173: Strength or Accuracy: Credit Assignment in Learning Classifier Systems

Esta edición ISBN ya no está disponible.

Sinopsis

1 Introduction.- 1.1 Two Example Machine Learning Tasks.- 1.2 Types of Task.- 1.2.1 Supervised and Reinforcement Learning.- 1.2.2 Sequential and Non-sequential Decision Tasks.- 1.3 Two Challenges for Classifier Systems.- 1.3.1 Problem 1: Learning a Policy from Reinforcement.- 1.3.2 Problem 2: Generalisation.- 1.4 Solution Methods.- 1.4.1 Method 1: Reinforcement Learning Algorithms.- 1.4.2 Method 2: Evolutionary Algorithms.- 1.5 Learning Classifier Systems.- 1.5.1 The Tripartite LCS Structure.- 1.5.2 LCS = Policy Learning + Generalisation.- 1.5.3 Credit Assignment in Classifier Systems.- 1.5.4 Strength and Accuracy-based Classifier Systems.- 1.6 About the Book.- 1.6.1 Why Compare Strength and Accuracy.- 1.6.2 Are LCS EC- or RL-based.- 1.6.3 Moving in Design Space.- 1.7 Structure of the Book.- 2 Learning Classifier Systems.- 2.1 Types of Classifier Systems.- 2.1.1 Michigan and Pittsburgh LCS.- 2.1.2 XCS and Traditional LCS?.- 2.2 Representing Rules.- 2.2.1 The Standard Ternary Language.- 2.2.2 Other Representations.- 2.2.3 Summary of Rule Representation.- 2.2.4 Notation for Rules.- 2.3 XCS.- 2.3.1 Wilson's Motivation for XCS.- 2.3.2 Overview of XCS.- 2.3.3 Wilson's Explore/Exploit Framework.- 2.3.4 The Performance System.- 2.3.4.1 The XCS Performance System Algorithm.- 2.3.4.2 The Match Set and Prediction Array.- 2.3.4.3 Action Selection.- 2.3.4.4 Experience-weighting of System Prediction.- 2.3.5 The Credit Assignment System.- 2.3.5.1 The MAM Technique.- 2.3.5.2 The Credit Assignment Algorithm.- 2.3.5.3 Sequential and Non-sequential Updates.- 2.3.5.4 Parameter Update Order.- 2.3.5.5 XCS Parameter Updates.- 2.3.6 The Rule Discovery System.- 2.3.6.1 Random Initial Populations.- 2.3.6.2 Covering.- 2.3.6.3 The Niche Genetic Algorithm.- 2.3.6.4 Alternative Mutation Schemes.- 2.3.6.5 Triggering the Niche GA.- 2.3.6.6 Deletion of Rules.- 2.3.6.7 Classifier Parameter Initialisation.- 2.3.6.8 Subsumption Deletion.- 2.4 SB-XCS.- 2.4.1 Specification of SB-XCS.- 2.4.2 Comparison of SB-XCS and Other Strength LCS.- 2.5 Initial Tests of XCS and SB-XCS.- 2.5.1 The 6 Multiplexer.- 2.5.2 Woods2.- 2.6 Summary.- 3 How Strength and Accuracy Differ.- 3.1 Thinking about Complex Systems.- 3.2 Holland's Rationale for CS-1 and his Later LCS.- 3.2.1 Schema Theory.- 3.2.2 The Bucket Brigade.- 3.2.3 Schema Theory + Bucket Brigade = Adaptation.- 3.3 Wilson's Rationale for XCS.- 3.3.1 A Bias towards Accurate Rules.- 3.3.2 A Bias towards General Rules.- 3.3.3 Complete Maps.- 3.3.4 Summary.- 3.4 A Rationale for SB-XCS.- 3.5 Analysis of Populations Evolved by XCS and SB-XCS.- 3.5.1 SB-XCS.- 3.5.2 XCS.- 3.5.3 Learning Rate.- 3.6 Different Goals, Different Representations.- 3.6.1 Default Hierarchies.- 3.6.2 Partial and Best Action Maps.- 3.6.3 Complete Maps.- 3.6.4 What do XCS and SB-XCS Really Learn?.- 3.7 Complete and Partial Maps Compared.- 3.7.1 Advantages of Partial Maps.- 3.7.2 Disadvantages of Partial Maps.- 3.7.3 Complete Maps and Strength.- 3.7.4 Contrasting Complete and Partial Maps in RL Terminology.- 3.7.5 Summary of Comparison.- 3.8 Ability to Express Generalisations.- 3.8.1 Mapping Policies and Mapping Value Functions.- 3.8.2 Adapting the Accuracy Criterion.- 3.8.3 XCS-hard and SB-XCS-easy Functions.- 3.8.4 Summary of Generalisation and Efficiency.- 3.9 Summary.- 4 What Should a Classifier System Learn?.- 4.1 Representing Boolean Functions.- 4.1.1 Truth Tables.- 4.1.2 On-sets and Off-sets.- 4.1.3 Sigma Notation.- 4.1.4 Disjunctive Normal Form.- 4.1.5 Representing Functions with Sets of Rules.- 4.1.6 How Should a Classifier System Represent a Solution?.- 4.1.7 The Value of a Single Rule.- 4.1.1 The Value of a Set of Rules.- 4.1.1 Complete and Correct Representations.- 4.1.1 Minimal Representations.- 4.1.1 Non-overlapping Representations.- 4.1.1 Why XCS Prefers Non-overlapping Populations.- 4.1.1 Should we Prefer Non-overlapping Populations?.- 4.1.1 Optimal Rule Sets: [O]s.- 4.1.1 Conflicting Rules.- 4.1.1 Representation in XCS.- 4.3 How Should We

"Sinopsis" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9781852337704: Strength or Accuracy: Credit Assignment in Learning Classifier Systems (Distinguished Dissertations)

Edición Destacada

ISBN 10:  1852337702 ISBN 13:  9781852337704
Editorial: Springer, 2004
Tapa dura