Artículos relacionados a Domain Adaptation for Visual Recognition: 25 (Foundations...

Domain Adaptation for Visual Recognition: 25 (Foundations and Trends® in Computer Graphics and Vision) - Tapa blanda

 
9781680830309: Domain Adaptation for Visual Recognition: 25 (Foundations and Trends® in Computer Graphics and Vision)

Sinopsis

Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sensors, variations due to illumination and viewpoint among others, computer vision applications present a very natural test bed for evaluating domain adaptation methods. This monograph provides a comprehensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, it discusses three adaptation scenarios, namely, (i) unsupervised adaptation where the "source domain" training data is partially labeled and the "target domain" test data is unlabeled; (ii) semi-supervised adaptation where the target domain also has partial labels; and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all of these scenarios, Domain Adaptation for Visual Recognition discusses the existing adaptation techniques in the literature. These techniques are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations, and have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept classification, and person detection. Domain Adaptation for Visual Recognition concludes by analyzing the challenges posed by the realm of "big visual data" -- in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability -- and draws parallels with efforts from the vision community on image transformation models and invariant descriptors so as to facilitate improved understanding of vision problems under uncertainty.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sensors, variations due to illumination and viewpoint among others, computer vision applications present a very natural test bed for evaluating domain adaptation methods. This monograph provides a comprehensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, it discusses three adaptation scenarios, namely, (i) unsupervised adaptation where the "source domain" training data is partially labeled and the "target domain" test data is unlabeled; (ii) semi-supervised adaptation where the target domain also has partial labels; and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all of these scenarios, Domain Adaptation for Visual Recognition discusses the existing adaptation techniques in the literature. These techniques are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations, and have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept classification, and person detection. Domain Adaptation for Visual Recognition concludes by analyzing the challenges posed by the realm of "big visual data" -- in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability -- and draws parallels with efforts from the vision community on image transformation models and invariant descriptors so as to facilitate improved understanding of vision problems under uncertainty.

Biografía del autor

Rama Chellappa is Minta Martin Professor of Engineering and an affiliate Professor of Computer Science at University of Maryland, College Park. He is also affiliated with the Center for Automation Research and UMIACS, and is serving as the Chair of the ECE department. He is a recipient of the K. S. Fu Prize from the IAPR and the Society, Technical Achievement and Meritorious Service Awards from the IEEE Signal Processing Society. He also received the Technical Achievement and Meritorious Service Awards from the IEEE Computer Society. In 2010, he was recognized as an Outstanding ECE by Purdue University. He is a Fellow of the IEEE, IAPR, OSA and AAAS, a Golden Core Member of the IEEE Computer Society, and has served as a Distinguished Lecturer of the IEEE Signal Processing Society as well as the President of the IEEE Biometrics Council.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Minor wear at edges/corners. Faint...
Ver este artículo

EUR 23,05 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 3,41 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Domain Adaptation for Visual Recognition: 25 (Foundations...

Imagen de archivo

Gopalan, Raghuraman; Li, Ruonan; Patel, Vishal M; Chellappa, Rama
Publicado por Now Publishers, 2015
ISBN 10: 1680830309 ISBN 13: 9781680830309
Antiguo o usado Tapa blanda

Librería: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Very Good. Minor wear at edges/corners. Faint storage scratches to cover. Minor storage marks at extremities of text blocks. Text as new and unread. Nº de ref. del artículo: 042270-7

Contactar al vendedor

Comprar usado

EUR 17,98
Convertir moneda
Gastos de envío: EUR 23,05
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Gopalan, Raghuraman; Li, Ruonan; Patel, Vishal M; Chellappa, Rama
Publicado por Now Publishers, 2015
ISBN 10: 1680830309 ISBN 13: 9781680830309
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 94. Nº de ref. del artículo: 26372471931

Contactar al vendedor

Comprar nuevo

EUR 111,06
Convertir moneda
Gastos de envío: EUR 3,41
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Gopalan, Raghuraman; Li, Ruonan; Patel, Vishal M; Chellappa, Rama
Publicado por Now Publishers, 2015
ISBN 10: 1680830309 ISBN 13: 9781680830309
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand pp. 94. Nº de ref. del artículo: 373606308

Contactar al vendedor

Comprar nuevo

EUR 115,41
Convertir moneda
Gastos de envío: EUR 7,49
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Gopalan, Raghuraman; Li, Ruonan; Patel, Vishal M; Chellappa, Rama
Publicado por Now Publishers, 2015
ISBN 10: 1680830309 ISBN 13: 9781680830309
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND pp. 94. Nº de ref. del artículo: 18372471921

Contactar al vendedor

Comprar nuevo

EUR 119,23
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Gopalan, Raghuraman, Li, Ruonan, Patel, Vishal M
Publicado por Now Publishers, 2015
ISBN 10: 1680830309 ISBN 13: 9781680830309
Antiguo o usado paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA82316808303096

Contactar al vendedor

Comprar usado

EUR 147,20
Convertir moneda
Gastos de envío: EUR 28,81
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito