Copula Modeling explores the copula approach for econometrics modeling of joint parametric distributions. Copula Modeling demonstrates that practical implementation and estimation is relatively straightforward despite the complexity of its theoretical foundations. An attractive feature of parametrically specific copulas is that estimation and inference are based on standard maximum likelihood procedures. Thus, copulas can be estimated using desktop econometric software. This offers a substantial advantage of copulas over recently proposed simulation-based approaches to joint modeling. Copulas are useful in a variety of modeling situations including financial markets, actuarial science, and microeconometrics modeling. Copula Modeling provides practitioners and scholars with a useful guide to copula modeling with a focus on estimation and misspecification. The authors cover important theoretical foundations. Throughout, the authors use Monte Carlo experiments and simulations to demonstrate copula properties
"Sinopsis" puede pertenecer a otra edición de este libro.
Copula Modeling explores the copula approach for econometrics modeling of joint parametric distributions. Copula Modeling demonstrates that practical implementation and estimation is relatively straightforward despite the complexity of its theoretical foundations. An attractive feature of parametrically specific copulas is that estimation and inference are based on standard maximum likelihood procedures. Thus, copulas can be estimated using desktop econometric software. This offers a substantial advantage of copulas over recently proposed simulation-based approaches to joint modeling. Copulas are useful in a variety of modeling situations including financial markets, actuarial science, and microeconometrics modeling. Copula Modeling provides practitioners and scholars with a useful guide to copula modeling with a focus on estimation and misspecification. The authors cover important theoretical foundations. Throughout, the authors use Monte Carlo experiments and simulations to demonstrate copula properties
Pravin K. Trivedi is Distinguished Professor and J. H. Rudy Professor of Economics at Indiana University, Bloomington. His research and teaching interests are in microeconometrics and health economics. He served as co-editor of the Econometrics Journal from 2000 to 2007 and has been on the board of Journal of Applied Econometrics since 1988. He is coauthor (with A. Colin Cameron) of the first edition of Regression Analysis of Count Data (Cambridge, 1998) and of Microeconometrics: Methods and Applications (Cambridge, 2005).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 9,82 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 9,83 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Hay-on-Wye Booksellers, Hay-on-Wye, HEREF, Reino Unido
Condición: Very Good. UNUSED - Some outer edges have minor scuffs. Cover has light scratches. Book content is in new unread condition. Nº de ref. del artículo: 104021-4
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 128. Nº de ref. del artículo: 263590295
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 128 Illus. Nº de ref. del artículo: 4290376
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 128. Nº de ref. del artículo: 183590301
Cantidad disponible: 4 disponibles
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
paperback. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-1601980205
Cantidad disponible: 1 disponibles