EXPLORATORY DATA ANALYSIS USING R by Ronald K. Pearson, 9781498730235
"Sinopsis" puede pertenecer a otra edición de este libro.
Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" – good, bad, and ugly – features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data.
The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing.
The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.
About the Author:
Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network).
Ronald K. Pearson currently works for GeoVera, a property insurance company in Fairfield, California, primarily in the analysis of text data. He holds a PhD in Electrical Engineering and Computer Science from the Massachussetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python, co-authored with Moncef Gabbouj (CRC Press, 2015). He is also the developer of the DataCamp course on base R graphics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,36 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Second Story Books, ABAA, Rockville, MD, Estados Unidos de America
Softcover. Octavo, xv, 547 pages. In Good plus condition. Spine is grey with white print. Cover has slight edge wear. Text block has name in ink on half-title page. Illustrated: graphs and figures, chiefly b&w. NOTE: Shelved in Netdesk Column R. 1395516. FP New Rockville Stock. Nº de ref. del artículo: 1395516
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00056478669
Cantidad disponible: 1 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00068317712
Cantidad disponible: 2 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-183942
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 562. Nº de ref. del artículo: 26375761781
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 30336230-n
Cantidad disponible: 10 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 562. Nº de ref. del artículo: 370283690
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 30336230
Cantidad disponible: 10 disponibles
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Exploratory Data Analysis Using R provides a classroom-tested introduction to exploratory data analysis (EDA) and introduces the range of "interesting" good, bad, and ugly features that can be found in data, and why it is important to find them. It also introduces the mechanics of using R to explore and explain data.The book begins with a detailed overview of data, exploratory analysis, and R, as well as graphics in R. It then explores working with external data, linear regression models, and crafting data stories. The second part of the book focuses on developing R programs, including good programming practices and examples, working with text data, and general predictive models. The book ends with a chapter on "keeping it all together" that includes managing the R installation, managing files, documenting, and an introduction to reproducible computing.The book is designed for both advanced undergraduate, entry-level graduate students, and working professionals with little to no prior exposure to data analysis, modeling, statistics, or programming. it keeps the treatment relatively non-mathematical, even though data analysis is an inherently mathematical subject. Exercises are included at the end of most chapters, and an instructor's solution manual is available.About the Author:Ronald K. Pearson holds the position of Senior Data Scientist with GeoVera, a property insurance company in Fairfield, California, and he has previously held similar positions in a variety of application areas, including software development, drug safety data analysis, and the analysis of industrial process data. He holds a PhD in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology and has published conference and journal papers on topics ranging from nonlinear dynamic model structure selection to the problems of disguised missing data in predictive modeling. Dr. Pearson has authored or co-authored books including Exploring Data in Engineering, the Sciences, and Medicine (Oxford University Press, 2011) and Nonlinear Digital Filtering with Python. He is also the developer of the DataCamp course on base R graphics and is an author of the datarobot and GoodmanKruskal R packages available from CRAN (the Comprehensive R Archive Network). "A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc." Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781498730235
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
UNK. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FT-9781498730235
Cantidad disponible: 10 disponibles