The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.
This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Michael C. Fu received his Ph.D. in applied mathematics from Harvard University and master's and bachelor's degrees in EECS and mathematics from MIT. Since 1989, he has been at the University of Maryland in the Robert H. Smith School of Business, where he is currently Ralph J. Tyser Professor of Management Science, with a joint appointment in the Institute for Systems Research (ISR) and an affiliate appointment in the Electrical and Computer Engineering Department, A. James Clark School of Engineering. At the University of Maryland, he was named a Distinguished Scholar-Teacher and received the ISR’s Outstanding Systems Engineering Faculty Award and the Business School's Allen J. Krowe Award for Teaching Excellence. He served as the Stochastic Models and Simulation Department Editor of Management Science from 2006-2008, as Simulation Area Editor of Operations Research from 2000-2005 and on the Editorial Boards of the INFORMS Journal on Computing, Mathematics of Operations Research, Production and Operations Management and IIE Transactions. He served as Program Chair of the 2011 Winter Simulation Conference and as Operations Research Program Director at the National Science Foundation from 2010-2012. His co-authored book, Conditional Monte Carlo: Gradient Estimation and Optimization Applications received the INFORMS College on Simulation Outstanding Publication Award. He also co-authored the research monograph Simulation-based Algorithms for Markov Decision Processes and co-edited the books Perspectives in Operations Research, Advances in Mathematical Finance and the 3rd edition of the Encyclopedia of Operations Research and Management Science. He is a Fellow of IEEE and the Institute of Operations Research and the Management Sciences (INFORMS).
The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods, and Markov decision processes.
This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners, and graduate students in the business/engineering fields of operations research, management science, operations management, and stochastic control, as well as in economics/finance and computer science.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,65 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first handbook on simulation optimizationOne of the hottest research topics and professionally-applied areas in OREditor is one of the most prominent names in the fieldDr. Michael C. Fu received his Ph.D. in applied mathemati. Nº de ref. del artículo: 447956273
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781493951666_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science. 404 pp. Englisch. Nº de ref. del artículo: 9781493951666
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science. Nº de ref. del artículo: 9781493951666
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The Handbook of Simulation Optimization presents an overview of the state of the art of simulation optimization, providing a survey of the most well-established approaches for optimizing stochastic simulation models and a sampling of recent research advances in theory and methodology. Leading contributors cover such topics as discrete optimization via simulation, ranking and selection, efficient simulation budget allocation, random search methods, response surface methodology, stochastic gradient estimation, stochastic approximation, sample average approximation, stochastic constraints, variance reduction techniques, model-based stochastic search methods and Markov decision processes.This single volume should serve as a reference for those already in the field and as a means for those new to the field for understanding and applying the main approaches. The intended audience includes researchers, practitioners and graduate students in the business/engineering fields of operations research, management science, operations management and stochastic control, as well as in economics/finance and computer science.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 404 pp. Englisch. Nº de ref. del artículo: 9781493951666
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 387. Nº de ref. del artículo: 26374996695
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 387. Nº de ref. del artículo: 372130056
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 387. Nº de ref. del artículo: 18374996701
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 403 pages. 9.30x6.20x0.95 inches. In Stock. Nº de ref. del artículo: x-1493951661
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77314939516616
Cantidad disponible: 1 disponibles