Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.
"Sinopsis" puede pertenecer a otra edición de este libro.
Intuitively, a sequence such as 101010101010101010… does not seem random, whereas 101101011101010100…, obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically equally likely? What does it mean to say that an individual mathematical object such as a real number is random, or to say that one real is more random than another? And what is the relationship between randomness and computational power. The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to address questions such as these. Much of this theory can be seen as exploring the relationships between three fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades, a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances. This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing context for its many concepts and theorems, discussing their significance, and highlighting their interactions. It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers and students in computability theory, algorithmic information theory, and theoretical computer science.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 32,04 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Authors were awarded the 2016 Shoenfield Prize by the Association for Symbolic Logic for outstanding expository writing in the field of logicEssential resource for researchers and graduate students in theoretical computer scie. Nº de ref. del artículo: 447955355
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of 'algorithmic randomness' and complexity for scientists from diverse fields. 884 pp. Englisch. Nº de ref. del artículo: 9781493938209
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781493938209_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Intuitively, a sequence such as 101010101010101010. does not seem random, whereas 101101011101010100., obtained using coin tosses, does. How can we reconcile this intuition with the fact that both are statistically equally likely What does it mean to say that an individual mathematical object such as a real number is random, or to say that one real is more random than another And what is the relationship between randomness and computational power. The theory of algorithmic randomness uses tools from computability theory and algorithmic information theory to address questions such as these. Much of this theory can be seen as exploring the relationships between three fundamental concepts: relative computability, as measured by notions such as Turing reducibility; information content, as measured by notions such as Kolmogorov complexity; and randomness of individual objects, as first successfully defined by Martin-Löf. Although algorithmic randomness has been studied for several decades, a dramatic upsurge of interest in the area, starting in the late 1990s, has led to significant advances. This is the first comprehensive treatment of this important field, designed to be both a reference tool for experts and a guide for newcomers. It surveys a broad section of work in the area, and presents most of its major results and techniques in depth. Its organization is designed to guide the reader through this large body of work, providing context for its many concepts and theorems, discussing their significance, and highlighting their interactions. It includes a discussion of effective dimension, which allows us to assign concepts like Hausdorff dimension to individual reals, and a focused but detailed introduction to computability theory. It will be of interest to researchers and students in computability theory, algorithmic information theory, and theoretical computer science. Nº de ref. del artículo: 9781493938209
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781493938209
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781493938209
Cantidad disponible: 10 disponibles
Librería: dsmbooks, Liverpool, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: D7F9-0-M-1493938207-6
Cantidad disponible: 1 disponibles