Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings--and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.
Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You'll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ted Dunning is Chief Applications Architect at MapR Technologies and committer and PMC member of the Apache Mahout, ZooKeeper, and Drill projects and mentor for the Apache Storm, DataFu, Flink, and Optiq projects. He contributed to Mahout clustering, classification, and matrix decomposition algorithms and helped expand the new version of Mahout Math library. Ted was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, built fraud-detection systems for ID Analytics (LifeLock), and is the inventor of over 24 issued patents to date. Ted has a PhD in computing science from University of Sheffield. When he’s not doing data science, he plays guitar and mandolin. Ted is on Twitter at @ted_dunning.
Ellen Friedman is a consultant and commentator, currently writing mainly about big data topics. She is a committer for the Apache Mahout project and a contributor to the Apache Drill project. With a PhD in Biochemistry, she has years of experience as a research scientist and has written about a variety of technical topics including molecular biology, nontraditional inheritance, and oceanography. Ellen is also co-author of a book of magic-themed cartoons, A Rabbit Under the Hat. Ellen is on Twitter at @Ellen_Friedman.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,34 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 0,66 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491915387
Cantidad disponible: 3 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491915387
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 121. Nº de ref. del artículo: B9781491915387
Cantidad disponible: 3 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781491915387
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Practical Machine Learning: Innovations in Recommendation 0.19. Book. Nº de ref. del artículo: BBS-9781491915387
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 21971072-n
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 48 pages. 8.75x6.00x0.25 inches. In Stock. Nº de ref. del artículo: x-1491915382
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 21971072
Cantidad disponible: 3 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 56. Nº de ref. del artículo: 125857466
Cantidad disponible: 3 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settingsand demonstrates how even a small-scale development team can design an effective large-scale recommendation system. Nº de ref. del artículo: 9781491915387
Cantidad disponible: 2 disponibles