Artículos relacionados a Machine Learning with PySpark: With Natural Language...

Machine Learning with PySpark: With Natural Language Processing and Recommender Systems - Tapa blanda

 
9781484277768: Machine Learning with PySpark: With Natural Language Processing and Recommender Systems

Sinopsis

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You’ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You’ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You’ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark’s latest ML library.

After completing this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

What you will learn:

  • Build a spectrum of supervised and unsupervised machine learning  algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems 
  • Leverage the new features in PySpark’s machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit models

Who This Book Is For 

Data science and machine learning professionals.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Pramod Singh works at Bain & Company in the Advanced Analytics Group. He has extensive hands-on experience in large scale machine learning, deep learning, data engineering, designing algorithms and application development. He has spent more than 13 years working in the field of Data and AI at different organizations. He’s published four books – Deploy Machine Learning Models to Production, Machine Learning with PySpark, Learn PySpark and Learn TensorFlow 2.0, all for Apress. He is also a regular speaker at major conferences such as O’Reilly’s Strata and AI conferences. Pramod holds a BTech in electrical engineering from B.A.T.U, and an MBA from Symbiosis University. He has also earned a Data Science certification from IIM–Calcutta. He lives in Gurgaon with his wife and 5-year-old son. In his spare time, he enjoys playing guitar, coding, reading, and watching football.

De la contraportada

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.

Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You’ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You’ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You’ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark’s latest ML library.

After completing this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applications

You will:

  • Build a spectrum of supervised and unsupervised machine learning  algorithms
  • Use PySpark's machine learning library to implement machine learning and recommender systems 
  • Leverage the new features in PySpark’s machine learning library
  • Understand data processing using Koalas in Spark
  • Handle issues around feature engineering, class balance, bias and variance, and cross validation to build optimally fit models

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Zustand: Hervorragend | Sprache...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

GRATIS gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Machine Learning with PySpark: With Natural Language...

Edición internacional
Edición internacional

Singh
Publicado por Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Tapa blanda
Edición internacional

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-210112

Contactar al vendedor

Comprar nuevo

EUR 26,89
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Pramod Singh
Publicado por Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 37958916/1

Contactar al vendedor

Comprar usado

EUR 30,07
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Singh, Pramod
Publicado por Apress L. P., 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Antiguo o usado Tapa blanda

Librería: Better World Books, Mishawaka, IN, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 53177920-6

Contactar al vendedor

Comprar usado

EUR 33,95
Convertir moneda
Gastos de envío: EUR 16,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Singh, Pramod
Publicado por Apress 12/9/2021, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Machine Learning with Pyspark: With Natural Language Processing and Recommender Systems. Book. Nº de ref. del artículo: BBS-9781484277768

Contactar al vendedor

Comprar nuevo

EUR 42,28
Convertir moneda
Gastos de envío: EUR 10,67
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Singh, Pramod
Publicado por Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781484277768

Contactar al vendedor

Comprar nuevo

EUR 47,49
Convertir moneda
Gastos de envío: EUR 6,83
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Singh, Pramod
Publicado por Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 43707187-n

Contactar al vendedor

Comprar nuevo

EUR 39,60
Convertir moneda
Gastos de envío: EUR 17,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pramod Singh
Publicado por APress, US, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Paperback

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 2nd ed. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Nº de ref. del artículo: LU-9781484277768

Contactar al vendedor

Comprar nuevo

EUR 57,08
Convertir moneda
Gastos de envío: EUR 3,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 8 disponibles

Añadir al carrito

Imagen del vendedor

Singh, Pramod
Publicado por Apress, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43707187

Contactar al vendedor

Comprar usado

EUR 44,36
Convertir moneda
Gastos de envío: EUR 17,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Pramod Singh
Publicado por APress, US, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Paperback

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 2nd ed. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Nº de ref. del artículo: LU-9781484277768

Contactar al vendedor

Comprar nuevo

EUR 59,86
Convertir moneda
Gastos de envío: EUR 2,29
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 8 disponibles

Añadir al carrito

Imagen del vendedor

Pramod Singh
Publicado por APress, US, 2021
ISBN 10: 1484277767 ISBN 13: 9781484277768
Nuevo Paperback

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 2nd ed. Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You'll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You'll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You'll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark's latest ML library.After completing this book, you will understand how to use PySpark's machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark's machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals. Nº de ref. del artículo: LU-9781484277768

Contactar al vendedor

Comprar nuevo

EUR 58,79
Convertir moneda
Gastos de envío: EUR 3,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 8 disponibles

Añadir al carrito

Existen otras 18 copia(s) de este libro

Ver todos los resultados de su búsqueda