Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.
"Sinopsis" puede pertenecer a otra edición de este libro.
Pradeepta Mishra is the Head of AI (Leni) at L&T Infotech (LTI), leading a large group of data scientists, computational linguistics experts, machine learning and deep learning experts in building next generation product, ‘Leni’ world’s first virtual data scientist. He was awarded as "India's Top - 40Under40DataScientists" by Analytics India Magazine. He is an author of 4 books, his first book has been recommended in HSLS center at the University of Pittsburgh, PA, USA. His latest book #PytorchRecipes was published by Apress. He has delivered a keynote session at the Global Data Science conference 2018, USA. He has delivered a TEDx talk on "Can Machines Think?", available on the official TEDx YouTube channel. He has delivered 200+ tech talks on data science, ML, DL, NLP, and AI in various Universities, meetups, technical institutions and community arranged forums.
Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.<div><br></div><div>You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decision<br></div><div><div><div><br></div><div>Further, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, you will be introduced to model explainability for unstructured data and natural language processing–related tasks. Additionally, the book looks at counterfactual explanations for AI models. <i>Practical Explainable AI Using Python</i> shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.</div><div><br></div></div><div>You will:</div><div><ul><li>Review the different ways of making an AI model interpretable and explainable</li><li>Examine the biasness and good ethical practices of AI models</li><li>Quantify, visualize, and estimate reliability of AI models</li><li>Design frameworks to unbox the black-box models</li><li>Assess the fairness of AI models<br></li><li>Understand the building blocks of trust in AI models<br></li><li>Increase the level of AI adoption</li></ul></div></div>
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43749588-n
Cantidad disponible: 4 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Practical Explainable AI Using Python: Artificial Intelligence Model Explanations Using Python-based Libraries, Extensions, and Frameworks 1.39. Book. Nº de ref. del artículo: BBS-9781484271575
Cantidad disponible: 5 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781484271575
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030152709
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43749588
Cantidad disponible: 4 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781484271575
Cantidad disponible: Más de 20 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Nº de ref. del artículo: 3ZOZIRA4ZL
Cantidad disponible: 10 disponibles
Librería: Brook Bookstore, Milano, MI, Italia
Condición: new. Nº de ref. del artículo: 3ZOZIRA4ZL
Cantidad disponible: 10 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9781484271575
Cantidad disponible: 10 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Learn the ins and outs of decisions, biases, and reliability of AI algorithms and how to make sense of these predictions. This book explores the so-called black-box models to boost the adaptability, interpretability, and explainability of the decisions made by AI algorithms using frameworks such as Python XAI libraries, TensorFlow 2.0+, Keras, and custom frameworks using Python wrappers.You'll begin with an introduction to model explainability and interpretability basics, ethical consideration, and biases in predictions generated by AI models. Next, you'll look at methods and systems to interpret linear, non-linear, and time-series models used in AI. The book will also cover topics ranging from interpreting to understanding how an AI algorithm makes a decisionFurther, you will learn the most complex ensemble models, explainability, and interpretability using frameworks such as Lime, SHAP, Skater, ELI5, etc. Moving forward, youwill be introduced to model explainability for unstructured data, classification problems, and natural language processingrelated tasks. Additionally, the book looks at counterfactual explanations for AI models. Practical Explainable AI Using Python shines the light on deep learning models, rule-based expert systems, and computer vision tasks using various XAI frameworks.What You'll LearnReview the different ways of making an AI model interpretable and explainableExamine the biasness and good ethical practices of AI modelsQuantify, visualize, and estimate reliability of AI modelsDesign frameworks to unbox the black-box modelsAssess the fairness of AI modelsUnderstand the building blocks of trust in AI modelsIncrease the level of AI adoptionWho This Book Is ForAI engineers, data scientists, and software developers involved in driving AI projects/ AI products. Intermediate-Advanced Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781484271575
Cantidad disponible: 1 disponibles