Artículos relacionados a Modern Data Mining Algorithms in C++ and CUDA C: Recent...

Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science - Tapa blanda

 
9781484259870: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

Sinopsis

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables.

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:

  • Forward selection component analysis
  • Local feature selection
  • Linking features and a target with a hidden Markov model
  • Improvements on traditional stepwise selection
  • Nominal-to-ordinal conversion

All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  

What You Will Learn

  • Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.
  • Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.
  • Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.

 

Who This Book Is For 

Intermediate to advanced data science programmers and analysts.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Timothy Masters has a PhD in statistics and is an experienced programmer. His dissertation was in image analysis. His career moved in the direction of signal processing, and for the last 25 years he's been involved in the development of automated trading systems in various financial markets.  

De la contraportada

As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You’ll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:

    Forward selection component analysis
  • Local feature selection
  • Linking features and a target with a hidden Markov model
  • Improvements on traditional stepwise selection
  • Nominal-to-ordinal conversion
All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. 

The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.  

You will:

  • Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set.
  • Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods.
  • Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as predictionof financial markets.
  • Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck.
  • Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input.
  • "Sobre este título" puede pertenecer a otra edición de este libro.

    Comprar usado

    Condición: Bueno
    The book has been read, but is...
    Ver este artículo

    EUR 6,94 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Comprar nuevo

    Ver este artículo

    GRATIS gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Otras ediciones populares con el mismo título

    9781484259894: Modern Data Mining Algorithms in C++ and CUDA C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science

    Edición Destacada

    ISBN 10:  1484259890 ISBN 13:  9781484259894
    Editorial: Apress, 2020
    Tapa blanda

    Resultados de la búsqueda para Modern Data Mining Algorithms in C++ and CUDA C: Recent...

    Edición internacional
    Edición internacional

    Masters
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Tapa blanda
    Edición internacional

    Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-208187

    Contactar al vendedor

    Comprar nuevo

    EUR 27,85
    Convertir moneda
    Gastos de envío: GRATIS
    De Estados Unidos de America a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Imagen de archivo

    Masters, Timothy
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Antiguo o usado Paperback

    Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014205611

    Contactar al vendedor

    Comprar usado

    EUR 41,99
    Convertir moneda
    Gastos de envío: EUR 6,94
    De Reino Unido a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Imagen del vendedor

    Masters, Timothy
    Publicado por Apress 6/30/2020, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Paperback or Softback

    Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Paperback or Softback. Condición: New. Modern Data Mining Algorithms in C++ and Cuda C: Recent Developments in Feature Extraction and Selection Algorithms for Data Science 0.93. Book. Nº de ref. del artículo: BBS-9781484259870

    Contactar al vendedor

    Comprar nuevo

    EUR 44,96
    Convertir moneda
    Gastos de envío: EUR 10,69
    De Estados Unidos de America a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 5 disponibles

    Añadir al carrito

    Imagen de archivo

    Masters, Timothy
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Tapa blanda

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Nº de ref. del artículo: I-9781484259870

    Contactar al vendedor

    Comprar nuevo

    EUR 51,10
    Convertir moneda
    Gastos de envío: EUR 6,84
    De Estados Unidos de America a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Imagen de archivo

    Masters, Timothy
    Publicado por Apress 2020-06, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo PF

    Librería: Chiron Media, Wallingford, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781484259870

    Contactar al vendedor

    Comprar nuevo

    EUR 48,10
    Convertir moneda
    Gastos de envío: EUR 17,34
    De Reino Unido a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 10 disponibles

    Añadir al carrito

    Imagen de archivo

    Masters, Timothy
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Tapa blanda

    Librería: Ria Christie Collections, Uxbridge, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. In English. Nº de ref. del artículo: ria9781484259870_new

    Contactar al vendedor

    Comprar nuevo

    EUR 64,42
    Convertir moneda
    Gastos de envío: EUR 5,19
    De Reino Unido a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Imagen de archivo

    Timothy Masters
    Publicado por APress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Paperback / softback
    Impresión bajo demanda

    Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 463. Nº de ref. del artículo: C9781484259870

    Contactar al vendedor

    Comprar nuevo

    EUR 66,88
    Convertir moneda
    Gastos de envío: EUR 7,35
    De Reino Unido a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Imagen del vendedor

    Timothy Masters
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Tapa blanda
    Impresión bajo demanda

    Librería: moluna, Greven, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A novel expert-driven data-mining approach to algorithms in C++ and CUDA C&nbspAuthor has been developing and using algorithms for over 20 yearsData mining is an important topic in big data and data science. Nº de ref. del artículo: 362611029

    Contactar al vendedor

    Comprar nuevo

    EUR 56,35
    Convertir moneda
    Gastos de envío: EUR 19,49
    De Alemania a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Imagen de archivo

    Masters, Timothy
    Publicado por Apress, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Paperback

    Librería: Revaluation Books, Exeter, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Paperback. Condición: Brand New. 237 pages. 10.00x7.00x0.50 inches. In Stock. Nº de ref. del artículo: x-1484259874

    Contactar al vendedor

    Comprar nuevo

    EUR 66,84
    Convertir moneda
    Gastos de envío: EUR 11,57
    De Reino Unido a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Imagen del vendedor

    Timothy Masters
    Publicado por Apress Jun 2020, 2020
    ISBN 10: 1484259874 ISBN 13: 9781484259870
    Nuevo Taschenbuch
    Impresión bajo demanda

    Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are:Forward selection component analysis Local feature selectionLinking features and a target with a hidden Markov modelImprovements on traditional stepwise selectionNominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code.The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it.What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets.Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is ForIntermediate to advanced data science programmers and analysts. 240 pp. Englisch. Nº de ref. del artículo: 9781484259870

    Contactar al vendedor

    Comprar nuevo

    EUR 69,54
    Convertir moneda
    Gastos de envío: EUR 11,00
    De Alemania a España
    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Existen otras 8 copia(s) de este libro

    Ver todos los resultados de su búsqueda