Measure Theory and Fine Properties of Functions, Revised Edition provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. The book emphasizes the roles of Hausdorff measure and capacity in characterizing the fine properties of sets and functions.
Topics covered include a quick review of abstract measure theory, theorems and differentiation in ℝn, Hausdorff measures, area and coarea formulas for Lipschitz mappings and related change-of-variable formulas, and Sobolev functions as well as functions of bounded variation.
The text provides complete proofs of many key results omitted from other books, including Besicovitch's covering theorem, Rademacher's theorem (on the differentiability a.e. of Lipschitz functions), area and coarea formulas, the precise structure of Sobolev and BV functions, the precise structure of sets of finite perimeter, and Aleksandrov's theorem (on the twice differentiability a.e. of convex functions).
This revised edition includes countless improvements in notation, format, and clarity of exposition. Also new are several sections describing the π-λ theorem, weak compactness criteria in L1, and Young measure methods for weak convergence. In addition, the bibliography has been updated.
Topics are carefully selected and the proofs are succinct, but complete. This book provides ideal reading for mathematicians and graduate students in pure and applied mathematics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Lawrence Craig Evans, University of California, Berkeley, USA
Ronald F. Gariepy, University of Kentucky, Lexington, USA
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 9,51 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR014160681
Cantidad disponible: 1 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781482242386
Cantidad disponible: 6 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 23060384-n
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781482242386_new
Cantidad disponible: 6 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 626. Nº de ref. del artículo: B9781482242386
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. . 2015. 1st Edition. Hardcover. . . . . Nº de ref. del artículo: V9781482242386
Cantidad disponible: 6 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 309 This item is printed on demand. Nº de ref. del artículo: 95273718
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 23060384
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 23060384
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware - This book provides a detailed examination of the central assertions of measure theory in n-dimensional Euclidean space. It emphasizes the roles of Hausdorff measure and the capacity in characterizing the fine properties of sets and functions. The book covers theorems. Nº de ref. del artículo: 9781482242386
Cantidad disponible: 1 disponibles