The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked.
"Sinopsis" puede pertenecer a otra edición de este libro.
The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked. 140 pp. Englisch. Nº de ref. del artículo: 9781461273844
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4190005
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461273844_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked. Nº de ref. del artículo: 9781461273844
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781461273844
Cantidad disponible: 10 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The problem of controlling the output of a system so as to achieve asymptotic tracking of prescribed trajectories and/or asymptotic re jection of undesired disturbances is a central problem in control the ory. A classical setup in which the problem was posed and success fully addressed - in the context of linear, time-invariant and finite dimensional systems - is the one in which the exogenous inputs, namely commands and disturbances, may range over the set of all possible trajectories ofa given autonomous linear system, commonly known as the exogeneous system or, more the exosystem. The case when the exogeneous system is a harmonic oscillator is, of course, classical. Even in this special case, the difference between state and error measurement feedback in the problem ofoutput reg ulation is profound. To know the initial condition of the exosystem is to know the amplitude and phase of the corresponding sinusoid. On the other hand, to solve the output regulation problem in this case with only error measurement feedback is to track, or attenu ate, a sinusoid ofknown frequency but with unknown amplitude and phase. This is in sharp contrast with alternative approaches, such as exact output tracking, where in lieu of the assumption that a signal is within a class of signals generated by an exogenous system, one instead assumes complete knowledge of the past, present and future time history of the trajectory to be tracked.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 140 pp. Englisch. Nº de ref. del artículo: 9781461273844
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 234. Nº de ref. del artículo: C9781461273844
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 140. Nº de ref. del artículo: 2697514372
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 140 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 95964251
Cantidad disponible: 4 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030028788
Cantidad disponible: Más de 20 disponibles