2. Some Background Information 49 3. Definitions and Terminology 52 4. The One Clause at a Time (OCAT) Approach 54 4. 1 Data Binarization 54 4. 2 The One Clause at a Time (OCAT) Concept 58 4. 3 A Branch-and-Bound Approach for Inferring Clauses 59 4. 4 Inference of the Clauses for the Illustrative Example 62 4. 5 A Polynomial Time Heuristic for Inferring Clauses 65 5. A Guided Learning Approach 70 6. The Rejectability Graph of Two Collections of Examples 72 6. 1 The Definition of the Rej ectability Graph 72 6. 2 Properties of the Rejectability Graph 74 6. 3 On the Minimum Clique Cover of the Rej ectability Graph 76 7. Problem Decomposition 77 7. 1 Connected Components 77 7. 2 Clique Cover 78 8. An Example of Using the Rejectability Graph 79 9. Conclusions 82 References 83 Author's Biographical Statement 87 Chapter 3 AN INCREMENTAL LEARNING ALGORITHM FOR INFERRING LOGICAL RULES FROM EXAMPLES IN THE FRAMEWORK OF THE COMMON REASONING PROCESS, by X. Naidenova 89 1. Introduction 90 2. A Model of Rule-Based Logical Inference 96 2. 1 Rules Acquired from Experts or Rules of the First Type 97 2. 2 Structure of the Knowledge Base 98 2. 3 Reasoning Operations for Using Logical Rules of the First Type 100 2. 4 An Example of the Reasoning Process 102 3. Inductive Inference of Implicative Rules From Examples 103 3.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book will give the reader a perspective into the core theory and practice of data mining and knowledge discovery (DM&KD). Its chapters combine many theoretical foundations for various DM&KD methods, and they present a rich array of examples many of which are drawn from real-life applications. Most of the theoretical developments discussed are accompanied by an extensive empirical analysis, which should give the reader both a deep theoretical and practical insight into the subjects covered.
The book presents the combined research experiences of its 40 authors gathered during a long search in gleaning new knowledge from data. The last page of each chapter has a brief biographical statement of its contributors, who are world-renowned experts.
Audience
The intended audience for this book includes graduate students studying data mining who have some background in mathematical logic and discrete optimization, as well as researchers and practitioners in the same area.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,94 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781441941732
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530295655
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a unique perspective into the core of data mining and knowledge discovery (DM and KD), combining many theoretical foundations for the behavior and capabilities of various DM and KD methods This book outlines the core theory and practi. Nº de ref. del artículo: 4174527
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book outlines the core theory and practice of data mining and knowledge discovery (DM & KD) examining theoretical foundations for various methods, and presenting an array of examples, many drawn from real-life applications. Most theoretical developments are accompanied by extensive empirical analysis, offering a deep insight into both theoretical and practical aspects of the subject. The book presents the combined research experiences of 40 expert contributors of world renown. 796 pp. Englisch. Nº de ref. del artículo: 9781441941732
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441941732_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 2. Some Background Information 49 3. Definitions and Terminology 52 4. The One Clause at a Time (OCAT) Approach 54 4. 1 Data Binarization 54 4. 2 The One Clause at a Time (OCAT) Concept 58 4. 3 A Branch-and-Bound Approach for Inferring Clauses 59 4. 4 Inference of the Clauses for the Illustrative Example 62 4. 5 A Polynomial Time Heuristic for Inferring Clauses 65 5. A Guided Learning Approach 70 6. The Rejectability Graph of Two Collections of Examples 72 6. 1 The Definition of the Rej ectability Graph 72 6. 2 Properties of the Rejectability Graph 74 6. 3 On the Minimum Clique Cover of the Rej ectability Graph 76 7. Problem Decomposition 77 7. 1 Connected Components 77 7. 2 Clique Cover 78 8. An Example of Using the Rejectability Graph 79 9. Conclusions 82 References 83 Author's Biographical Statement 87 Chapter 3 AN INCREMENTAL LEARNING ALGORITHM FOR INFERRING LOGICAL RULES FROM EXAMPLES IN THE FRAMEWORK OF THE COMMON REASONING PROCESS, by X. Naidenova 89 1. Introduction 90 2. A Model of Rule-Based Logical Inference 96 2. 1 Rules Acquired from Experts or Rules of the First Type 97 2. 2 Structure of the Knowledge Base 98 2. 3 Reasoning Operations for Using Logical Rules of the First Type 100 2. 4 An Example of the Reasoning Process 102 3. Inductive Inference of Implicative Rules From Examples 103 3. Nº de ref. del artículo: 9781441941732
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -2. Some Background Information 49 3. Definitions and Terminology 52 4. The One Clause at a Time (OCAT) Approach 54 4. 1 Data Binarization 54 4. 2 The One Clause at a Time (OCAT) Concept 58 4. 3 A Branch-and-Bound Approach for Inferring Clauses 59 4. 4 Inference of the Clauses for the Illustrative Example 62 4. 5 A Polynomial Time Heuristic for Inferring Clauses 65 5. A Guided Learning Approach 70 6. The Rejectability Graph of Two Collections of Examples 72 6. 1 The Definition of the Rej ectability Graph 72 6. 2 Properties of the Rejectability Graph 74 6. 3 On the Minimum Clique Cover of the Rej ectability Graph 76 7. Problem Decomposition 77 7. 1 Connected Components 77 7. 2 Clique Cover 78 8. An Example of Using the Rejectability Graph 79 9. Conclusions 82 References 83 Author's Biographical Statement 87 Chapter 3 AN INCREMENTAL LEARNING ALGORITHM FOR INFERRING LOGICAL RULES FROM EXAMPLES IN THE FRAMEWORK OF THE COMMON REASONING PROCESS, by X. Naidenova 89 1. Introduction 90 2. A Model of Rule-Based Logical Inference 96 2. 1 Rules Acquired from Experts or Rules of the First Type 97 2. 2 Structure of the Knowledge Base 98 2. 3 Reasoning Operations for Using Logical Rules of the First Type 100 2. 4 An Example of the Reasoning Process 102 3. Inductive Inference of Implicative Rules From Examples 103 3.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 796 pp. Englisch. Nº de ref. del artículo: 9781441941732
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 798. Nº de ref. del artículo: 262571810
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 798 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5276157
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 748 pages. 9.00x6.00x1.80 inches. In Stock. Nº de ref. del artículo: x-1441941738
Cantidad disponible: 2 disponibles