Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation: 32 (Chapman & Hall/CRC Biostatistics Series) - Tapa dura

Libro 19 de 151: Chapman & Hall/CRC Biostatistics

Tan, Ming T.; Tian, Guo-Liang; Ng, Kai Wang

 
9781420077490: Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation: 32 (Chapman & Hall/CRC Biostatistics Series)

Sinopsis

Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors. The methods are based on the inverse Bayes formulae discovered by one of the author in 1995. Applying the Bayesian approach to important real-world problems, the authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms.

After introducing the missing data problems, Bayesian approach, and posterior computation, the book succinctly describes EM-type algorithms, Monte Carlo simulation, numerical techniques, and optimization methods. It then gives exact posterior solutions for problems, such as nonresponses in surveys and cross-over trials with missing values. It also provides noniterative posterior sampling solutions for problems, such as contingency tables with supplemental margins, aggregated responses in surveys, zero-inflated Poisson, capture-recapture models, mixed effects models, right-censored regression model, and constrained parameter models. The text concludes with a discussion on compatibility, a fundamental issue in Bayesian inference.

This book offers a unified treatment of an array of statistical problems that involve missing data and constrained parameters. It shows how Bayesian procedures can be useful in solving these problems.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.

Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong.

Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9780367385309: Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation: 32 (Chapman & Hall/CRC Biostatistics, 32)

Edición Destacada

ISBN 10:  0367385309 ISBN 13:  9780367385309
Editorial: Chapman and Hall/CRC, 2019
Tapa blanda