This comprehensive handbook presents hundreds of classical theorems and proofs that span many areas, including basic equalities and inequalities, combinatorics, linear algebra, calculus, trigonometry, geometry, set theory, game theory, recursion, and algorithms. It derives many forms of mathematical induction, such as infinite descent and the axiom of choice, from basic principles. Requiring only a modest amount of mathematical maturity to understand most results and proofs, the book contains more than 750 exercises-with complete solutions to at least 500. It also includes nearly 600 bibliographic references, numerous cross references, and an extensive index of over 3,000 entries.
"Sinopsis" puede pertenecer a otra edición de este libro.
David S. Gunderson is a professor and chair of the Department of Mathematics at the University of Manitoba in Winnipeg, Canada. He earned his Ph.D. in pure mathematics from Emory University. His research interests include Ramsey theory, extremal graph theory, combinatorial geometry, combinatorial number theory, and lattice theory.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2317530312019
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 27469921-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics.In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorns lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs.The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781138199019
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 921. Nº de ref. del artículo: 372050222
Cantidad disponible: 3 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781138199019_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 27469921-n
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781138199019
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 921. Nº de ref. del artículo: 26375043825
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 921. Nº de ref. del artículo: 18375043835
Cantidad disponible: 3 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. Handbook of Mathematical Induction: Theory and Applications shows how to find and write proofs via mathematical induction. This comprehensive book covers the theory, the structure of the written proof, all standard exercises, and hundreds of application examples from nearly every area of mathematics.In the first part of the book, the author discusses different inductive techniques, including well-ordered sets, basic mathematical induction, strong induction, double induction, infinite descent, downward induction, and several variants. He then introduces ordinals and cardinals, transfinite induction, the axiom of choice, Zorns lemma, empirical induction, and fallacies and induction. He also explains how to write inductive proofs.The next part contains more than 750 exercises that highlight the levels of difficulty of an inductive proof, the variety of inductive techniques available, and the scope of results provable by mathematical induction. Each self-contained chapter in this section includes the necessary definitions, theory, and notation and covers a range of theorems and problems, from fundamental to very specialized. The final part presents either solutions or hints to the exercises. Slightly longer than what is found in most texts, these solutions provide complete details for every step of the problem-solving process. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781138199019
Cantidad disponible: 1 disponibles