Artículos relacionados a Binary Neural Networks: Algorithms, Architectures,...

Binary Neural Networks: Algorithms, Architectures, and Applications (Multimedia Computing, Communication and Intelligence) - Tapa blanda

 
9781032452500: Binary Neural Networks: Algorithms, Architectures, and Applications (Multimedia Computing, Communication and Intelligence)

Sinopsis

Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition, and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS and binary NAS and its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech recognition, object detection, and tracking. These topics can help researchers better understand the usefulness and the potential of network compression on practical applications. Moreover, interested readers should have basic knowledge of machine learning and deep learning to better understand the methods described in this book.

Key Features

  • Reviews recent advances in CNN compression and acceleration
  • Elaborates recent advances on binary neural network (BNN) technologies
  • Introduces applications of BNN in image classification, speech recognition, object detection, and more

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Baochang Zhang is a full Professor with Institute of Artificial Intelligence, Beihang University, Beijing, China. He was selected by the Program for New Century Excellent Talents in University of Ministry of Education of China, also selected as Academic Advisor of Deep Learning Lab of Baidu Inc., and a distinguished researcher of Beihang Hangzhou Institute in Zhejiang Province. His research interests include explainable deep learning, computer vision and patter recognition. His HGPP and LDP methods were state-of-the-art feature descriptors, with 1234 and 768 Google Scholar citations, respectively. Both are "Test-of-Time" works. Our 1-bit methods achieved the best performance on ImageNet. His group also won the ECCV 2020 tiny object detection, COCO object detection, and ICPR 2020 Pollen recognition challenges.

Sheng Xu received the B.E. degree in Automotive Engineering from Beihang University, Beijing, China. He is currently a Ph.D. with the school of Automation Science and Electrical Engineering, Beihang University, Beijing, China, specializing in computer vision, model quantization, and compression. He has made significant contributions to the field and has published about a dozen papers as the first author in top-tier conferences and journals such as CVPR, ECCV, NeurIPS, AAAI, BMVC, IJCV, and ACM TOMM. Notably, he has 4 papers selected as oral or highlighted presentations by these prestigious conferences. Furthermore, Sheng Xu actively participates in the academic community as a reviewer for various international journals and conferences, including CVPR, ICCV, ECCV, NeurIPS, ICML, and IEEE TCSVT. His expertise has also led to his group's victory in the ECCV 2020 tiny object detection challenge.

Mingbao Lin finished his M.S.-Ph.D. study and obtained the Ph.D. degree in intelligence science and technology from Xiamen University, Xiamen, China, in 2022. Earlier, he received the B.S. degree from Fuzhou University, Fuzhou, China, in 2016. He is currently a senior researcher with the Tencent Youtu Lab, Shanghai, China. His publications on top-tier conferences/journals include IEEE TPAMI, IJCV, IEEE TIP, IEEE TNNLS, CVPR, NeurIPS, AAAI, IJCAI, ACM MM and so on. His current research interest is to develop efficient vision model, as well as information retrieval.

Tiancheng Wang received the B.E. degree in Automation from Beihang University, Beijing, China. He is currently pursuing the Ph.D. degree with the school of Institute of Artificial Intelligence, Beihang University, Beijing, China. During undergraduate, he has been awarded the title of Merit Student for several consecutive years, and has received various scholarships including academic excellence scholarship and academic competitions scholarship, etc. He was involved in several AI projects, including behavior detection and intention understanding research and unmanned air-based vision platform, etc. Now, his current research interests include deep learning and network compression, his goal is to explore the highly energy-saving model and drive the deployment of neural networks in embedded devices.

Dr. David Doermann is a Professor of Empire Innovation at the University at Buffalo (UB) and the Director of the University at Buffalo Artificial Intelligence Institute. Prior to coming to UB, he was a program manager at the Defense Advanced Research Projects Agency (DARPA), where he developed, selected and oversaw approximately $150 million in research and transition funding in the areas of computer vision, human language technologies and voice analytics. He coordinated performers on all of the projects, orchestrating consensus, evaluating cross team management and overseeing fluid program objectives.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 7,65 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781032452487: Binary Neural Networks: Algorithms, Architectures, and Applications (Multimedia Computing, Communication and Intelligence)

Edición Destacada

ISBN 10:  103245248X ISBN 13:  9781032452487
Editorial: CRC Press, 2023
Tapa dura

Resultados de la búsqueda para Binary Neural Networks: Algorithms, Architectures,...

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781032452500

Contactar al vendedor

Comprar nuevo

EUR 58,70
Convertir moneda
Gastos de envío: EUR 7,65
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781032452500

Contactar al vendedor

Comprar nuevo

EUR 71,98
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 409084491

Contactar al vendedor

Comprar nuevo

EUR 66,96
Convertir moneda
Gastos de envío: EUR 7,51
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Baochang Zhang
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Paperback

Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition, and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS and binary NAS and its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech recognition, object detection, and tracking. These topics can help researchers better understand the usefulness and the potential of network compression on practical applications. Moreover, interested readers should have basic knowledge of machine learning and deep learning to better understand the methods described in this book.Key FeaturesReviews recent advances in CNN compression and accelerationElaborates recent advances on binary neural network (BNN) technologiesIntroduces applications of BNN in image classification, speech recognition, object detection, and more Our book will also introduce NAS due to its superiority and state-of-the-art performance in various applications, such as image classification and object detection. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781032452500

Contactar al vendedor

Comprar nuevo

EUR 76,99
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. 1st edition NO-PA16APR2015-KAP. Nº de ref. del artículo: 26404069780

Contactar al vendedor

Comprar nuevo

EUR 76,33
Convertir moneda
Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781032452500_new

Contactar al vendedor

Comprar nuevo

EUR 71,85
Convertir moneda
Gastos de envío: EUR 13,84
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang; Xu, Sheng; Lin, Mingbao; Wang, Tiancheng; Doermann, David
Publicado por CRC Press, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 18404069790

Contactar al vendedor

Comprar nuevo

EUR 78,37
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 3 disponibles

Añadir al carrito

Imagen de archivo

Baochang Zhang
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Paperback

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition, and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS and binary NAS and its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech recognition, object detection, and tracking. These topics can help researchers better understand the usefulness and the potential of network compression on practical applications. Moreover, interested readers should have basic knowledge of machine learning and deep learning to better understand the methods described in this book.Key FeaturesReviews recent advances in CNN compression and accelerationElaborates recent advances on binary neural network (BNN) technologiesIntroduces applications of BNN in image classification, speech recognition, object detection, and more Our book will also introduce NAS due to its superiority and state-of-the-art performance in various applications, such as image classification and object detection. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781032452500

Contactar al vendedor

Comprar nuevo

EUR 71,57
Convertir moneda
Gastos de envío: EUR 31,53
De Australia a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Zhang, Baochang/ Xu, Sheng/ Lin, Mingbao/ Wang, Tiancheng/ Doermann, David
Publicado por CRC Pr I Llc, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Paperback

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 215 pages. 10.00x7.00x10.00 inches. In Stock. Nº de ref. del artículo: x-1032452501

Contactar al vendedor

Comprar nuevo

EUR 93,34
Convertir moneda
Gastos de envío: EUR 28,88
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Baochang Zhang
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032452501 ISBN 13: 9781032452500
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including parameter quantization, network pruning, low-rank decomposition, and knowledge distillation. More recently, to reduce the burden of handcrafted architecture design, neural architecture search (NAS) has been used to automatically build neural networks by searching over a vast architecture space. Our book will also introduce NAS and binary NAS and its superiority and state-of-the-art performance in various applications, such as image classification and object detection. We also describe extensive applications of compressed deep models on image classification, speech recognition, object detection, and tracking. These topics can help researchers better understand the usefulness and the potential of network compression on practical applications. Moreover, interested readers should have basic knowledge of machine learning and deep learning to better understand the methods described in this book.Key FeaturesReviews recent advances in CNN compression and accelerationElaborates recent advances on binary neural network (BNN) technologiesIntroduces applications of BNN in image classification, speech recognition, object detection, and more Our book will also introduce NAS due to its superiority and state-of-the-art performance in various applications, such as image classification and object detection. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781032452500

Contactar al vendedor

Comprar nuevo

EUR 79,72
Convertir moneda
Gastos de envío: EUR 42,75
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda