Artículos relacionados a Dynamical Zeta Functions for Piecewise Monotone Maps...

Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series) - Tapa blanda

 
9780821836019: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series)

Sinopsis

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\mathbb C}$. The formal power series $\zeta (z) = \exp \sum ^\infty_{m=1} \frac {z^m} {m} \sum_{x \in \mathrm {Fix}\,f^m} \prod ^{m-1}_{k=0} g (f^kx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\mathbb C $. The formal power series $\zeta (z) = \exp \sum infty {m=1 \frac {zm {m \sum {x \in \mathrm {Fix \,fm \prod {m-1 {k=0 g (fkx)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Shipped within 24 hours from our...
Ver este artículo

EUR 9,20 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780821869918: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval: No. 4 (CRM Monograph Series)

Edición Destacada

ISBN 10:  0821869914 ISBN 13:  9780821869918
Editorial: American Mathematical Society, 1994
Tapa dura

Resultados de la búsqueda para Dynamical Zeta Functions for Piecewise Monotone Maps...

Imagen de archivo

Ruelle, David David Ruelle,
Publicado por American Mathematical Society -, 2004
ISBN 10: 0821836013 ISBN 13: 9780821836019
Antiguo o usado paperback

Librería: Bahamut Media, Reading, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Nº de ref. del artículo: 6545-9780821836019

Contactar al vendedor

Comprar usado

EUR 10,22
Convertir moneda
Gastos de envío: EUR 9,20
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ruelle, David David Ruelle,
Publicado por American Mathematical Society, 2004
ISBN 10: 0821836013 ISBN 13: 9780821836019
Antiguo o usado paperback

Librería: AwesomeBooks, Wallingford, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Very Good. Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Nº de ref. del artículo: 7719-9780821836019

Contactar al vendedor

Comprar usado

EUR 10,22
Convertir moneda
Gastos de envío: EUR 9,20
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito