Artículos relacionados a Dynamical Zeta Functions for Piecewise Monotone Maps...

Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval: No. 4 (CRM Monograph Series) - Tapa dura

 
9780821869918: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval: No. 4 (CRM Monograph Series)

Sinopsis

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\Bbb C $. The formal power series $\zeta(z) = \exp \sum infty_{m=1 \frac{z {m \sum_{x \in \roman{Fix \,f \prod m-1 _{k=0 g (f x)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$. This series is published by the AMS for the Centre de Recherches Math\'ematiques. This book is intended for researchers in mathematics and mathematical physics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Consider a space $M$, a map $f:M\to M$, and a function $g:M \to {\Bbb C $. The formal power series $\zeta(z) = \exp \sum infty_{m=1 \frac{z {m \sum_{x \in \roman{Fix \,f \prod m-1 _{k=0 g (f x)$ yields an example of a dynamical zeta function. Such functions have unexpected analytic properties and interesting relations to the theory of dynamical systems, statistical mechanics, and the spectral theory of certain operators (transfer operators). The first part of this monograph presents a general introduction to this subject. The second part is a detailed study of the zeta functions associated with piecewise monotone maps of the interval $[0,1]$. In particular, Ruelle gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator. He also proves a theorem expressing the largest eigenvalue of the transfer operator in terms of the ergodic properties of $(M,f,g)$. This series is published by the AMS for the Centre de Recherches Math\'ematiques. This book is intended for researchers in mathematics and mathematical physics.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
- BOOK IN GREAT CONDITION - -Used...
Ver este artículo

EUR 64,13 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780821836019: Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval (CRM Monograph Series)

Edición Destacada

ISBN 10:  0821836013 ISBN 13:  9780821836019
Editorial: American Mathematical Society, 2007
Tapa blanda

Resultados de la búsqueda para Dynamical Zeta Functions for Piecewise Monotone Maps...

Imagen de archivo

Ruelle, David
Publicado por Amer Mathematical Society, 1994
ISBN 10: 0821869914 ISBN 13: 9780821869918
Antiguo o usado Tapa dura

Librería: DFTP Holdings, DAYTON, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. - BOOK IN GREAT CONDITION - -Used Texts May Have Used Book Stickers on the Cover. Used texts may NOT contain supplemental materials such as CD's, info-trac, access codes, etc. Satisfaction Guaranteed! Nº de ref. del artículo: 2023558

Contactar al vendedor

Comprar usado

EUR 19,20
Convertir moneda
Gastos de envío: EUR 64,13
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ruelle, David
Publicado por American Mathematical Society, 1994
ISBN 10: 0821869914 ISBN 13: 9780821869918
Antiguo o usado Tapa dura

Librería: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good+. Text clean and tight; no dust jacket; Crm Monograph, Vol 4; 0.5 x 10.5 x 7.5 Inches; 62 pages. Nº de ref. del artículo: 210389

Contactar al vendedor

Comprar usado

EUR 22,02
Convertir moneda
Gastos de envío: EUR 64,99
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito