Bayesian Computation with R (Use R!)

3,38 valoración promedio
( 29 valoraciones por Goodreads )
 
9780387922973: Bayesian Computation with R (Use R!)

There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN).

"Sinopsis" puede pertenecer a otra edición de este libro.

From the Back Cover:

There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.

Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.

This book is a suitable companion book for an introductory course on Bayesian methods and is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.

The second edition contains several new topics such as the use of mixtures of conjugate priors and the use of Zellner’s g priors to choose between models in linear regression. There are more illustrations of the construction of informative prior distributions, such as the use of conditional means priors and multivariate normal priors in binary regressions. The new edition contains changes in the R code illustrations according to the latest edition of the LearnBayes package.

Jim Albert is Professor of Statistics at Bowling Green State University. He is Fellow of the American Statistical Association and is past editor of The American Statistician. His books include Ordinal Data Modeling (with Val Johnson), Workshop Statistics: Discovery with Data, A Bayesian Approach (with Allan Rossman), and Bayesian Computation using Minitab.

Review:

new text

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Jim Albert
Editorial: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Paperback Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2009. Paperback. Estado de conservación: New. 2nd ed. 2009. Language: English . Brand New Book. There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN). Nº de ref. de la librería AAU9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 41,14
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

2.

Jim Albert
Editorial: Springer-Verlag New York Inc., United States (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Paperback Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., United States, 2009. Paperback. Estado de conservación: New. 2nd ed. 2009. Language: English . Brand New Book. There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to ?t very complex models that cannot be ?t by alternative frequentist methods. To ?t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de?ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN). Nº de ref. de la librería AAU9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 42,24
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

3.

Jim Albert
Editorial: Springer New York 2009-05-15, New York (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos paperback Cantidad: > 20
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción Springer New York 2009-05-15, New York, 2009. paperback. Estado de conservación: New. Nº de ref. de la librería 9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 41,15
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,44
De Reino Unido a España
Destinos, gastos y plazos de envío

4.

Albert, Jim
Editorial: Springer-Verlag New York Inc. (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Tapa blanda Cantidad: 3
Librería
Valoración
[?]

Descripción Springer-Verlag New York Inc., 2009. Estado de conservación: New. 2009. 2nd ed. 2009. Paperback. There has been a dramatic growth in the development and application of Bayesian inferential methods. This book introduces Bayesian modeling by the use of computation using the R language. The new edition contains changes in the R code illustrations. Series: Use R! Num Pages: 300 pages, biography. BIC Classification: PBKS; PBT; PBU; PBV; UGK. Category: (P) Professional & Vocational. Dimension: 236 x 155 x 3. Weight in Grams: 436. . . . . . . Nº de ref. de la librería V9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 47,81
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Irlanda a España
Destinos, gastos y plazos de envío

5.

Jim Albert
Editorial: Springer
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Paperback Cantidad: 5
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción Springer. Paperback. Estado de conservación: New. New copy - Usually dispatched within 2 working days. Nº de ref. de la librería B9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 41,25
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,71
De Reino Unido a España
Destinos, gastos y plazos de envío

6.

Jim Albert
Editorial: Springer (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Tapa blanda Cantidad: 3
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Springer, 2009. Estado de conservación: New. book. Nº de ref. de la librería ria9780387922973_rkm

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 46,57
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,13
De Reino Unido a España
Destinos, gastos y plazos de envío

7.

Albert, Jim
Editorial: Springer-Verlag New York Inc. (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Cantidad: 3
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Springer-Verlag New York Inc., 2009. PAP. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería BB-9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 42,03
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 8,88
De Reino Unido a España
Destinos, gastos y plazos de envío

8.

Albert, Jim
Editorial: Springer-Verlag New York Inc.
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Tapa blanda Cantidad: 3
Librería
Kennys Bookstore
(Olney, MD, Estados Unidos de America)
Valoración
[?]

Descripción Springer-Verlag New York Inc. Estado de conservación: New. 2009. 2nd ed. 2009. Paperback. There has been a dramatic growth in the development and application of Bayesian inferential methods. This book introduces Bayesian modeling by the use of computation using the R language. The new edition contains changes in the R code illustrations. Series: Use R! Num Pages: 300 pages, biography. BIC Classification: PBKS; PBT; PBU; PBV; UGK. Category: (P) Professional & Vocational. Dimension: 236 x 155 x 3. Weight in Grams: 436. . . . . . Books ship from the US and Ireland. Nº de ref. de la librería V9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 51,52
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

9.

Jim Albert
Editorial: Springer (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Tapa blanda Cantidad: 1
Librería
Valoración
[?]

Descripción Springer, 2009. Estado de conservación: New. Nº de ref. de la librería UA9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,10
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,99
De Alemania a España
Destinos, gastos y plazos de envío

10.

Jim Albert
Editorial: Springer-Verlag Gmbh Jun 2009 (2009)
ISBN 10: 0387922970 ISBN 13: 9780387922973
Nuevos Taschenbuch Cantidad: 1
Librería
Valoración
[?]

Descripción Springer-Verlag Gmbh Jun 2009, 2009. Taschenbuch. Estado de conservación: Neu. Neuware - There has been dramatic growth in the development and application of Bayesian inference in statistics. Berger (2000) documents the increase in Bayesian activity by the number of published research articles, the number of books,andtheextensivenumberofapplicationsofBayesianarticlesinapplied disciplines such as science and engineering. One reason for the dramatic growth in Bayesian modeling is the availab- ity of computational algorithms to compute the range of integrals that are necessary in a Bayesian posterior analysis. Due to the speed of modern c- puters, it is now possible to use the Bayesian paradigm to t very complex models that cannot be t by alternative frequentist methods. To t Bayesian models, one needs a statistical computing environment. This environment should be such that one can: write short scripts to de ne a Bayesian model use or write functions to summarize a posterior distribution use functions to simulate from the posterior distribution construct graphs to illustrate the posterior inference An environment that meets these requirements is the R system. R provides a wide range of functions for data manipulation, calculation, and graphical d- plays. Moreover, it includes a well-developed, simple programming language that users can extend by adding new functions. Many such extensions of the language in the form of packages are easily downloadable from the Comp- hensive R Archive Network (CRAN). 298 pp. Englisch. Nº de ref. de la librería 9780387922973

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,10
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,95
De Alemania a España
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda