Mathematics is generally considered as the only science where knowledge is uni form, universal, and free from contradictions. „Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra dictions were found that would question the uniformity of mathematics" (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab lishing a communicable „code of conduct" which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co ordinated and unequivocal way.
"Sinopsis" puede pertenecer a otra edición de este libro.
The Construction of New Mathematical Knowledge in Classroom Interaction deals with the very specific characteristics of mathematical communication in the classroom. The general research question of this book is: How can everyday mathematics teaching be described, understood and developed as a teaching and learning environment in which the students gain mathematical insights and increasing mathematical competence by means of the teacher s initiatives, offers and challenges? How can the quality of mathematics teaching be realized and appropriately described? And the following more specific research question is investigated: How is new mathematical knowledge interactively constructed in a typical instructional communication among students together with the teacher? In order to answer this question, an attempt is made to enter as in-depth as possible under the surface of the visible phenomena of the observable everyday teaching events. In order to do so, theoretical views about mathematical knowledge and communication are elaborated.
The careful qualitative analyses of several episodes of mathematics teaching in primary school is based on an epistemologically oriented analysis Steinbring has developed over the last years and applied to mathematics teaching of different grades. The book offers a coherent presentation and a meticulous application of this fundamental research method in mathematics education that establishes a reciprocal relationship between everyday classroom communication and epistemological conditions of mathematical knowledge constructed in interaction.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-275201
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-342617
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 252. Nº de ref. del artículo: 26315750
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 252 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 7564985
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The careful analysis of several episodes of mathematics teaching in primary school is based on an epistemologically oriented analysis Steinbring has developed and applied to mathematics teaching of different gradesMathematics is generally conside. Nº de ref. del artículo: 5909355
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 252. Nº de ref. del artículo: 18315756
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Mathematics is generally considered as the only science where knowledge is uni form, universal, and free from contradictions. 'Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra dictions were found that would question the uniformity of mathematics' (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab lishing a communicable 'code of conduct' which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co ordinated and unequivocal way. 252 pp. Englisch. Nº de ref. del artículo: 9780387242514
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387242514_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mathematics is generally considered as the only science where knowledge is uni form, universal, and free from contradictions. 'Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra dictions were found that would question the uniformity of mathematics' (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab lishing a communicable 'code of conduct' which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co ordinated and unequivocal way. Nº de ref. del artículo: 9780387242514
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -Mathematics is generally considered as the only science where knowledge is uni form, universal, and free from contradictions. ¿Mathematics is a social product - a 'net of norms', as Wittgenstein writes. In contrast to other institutions - traffic rules, legal systems or table manners -, which are often internally contradictory and are hardly ever unrestrictedly accepted, mathematics is distinguished by coherence and consensus. Although mathematics is presumably the discipline, which is the most differentiated internally, the corpus of mathematical knowledge constitutes a coher ent whole. The consistency of mathematics cannot be proved, yet, so far, no contra dictions were found that would question the uniformity of mathematics' (Heintz, 2000, p. 11). The coherence of mathematical knowledge is closely related to the kind of pro fessional communication that research mathematicians hold about mathematical knowledge. In an extensive study, Bettina Heintz (Heintz 2000) proposed that the historical development of formal mathematical proof was, in fact, a means of estab lishing a communicable ¿code of conduct' which helped mathematicians make themselves understood in relation to the truth of mathematical statements in a co ordinated and unequivocal way.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch. Nº de ref. del artículo: 9780387242514
Cantidad disponible: 2 disponibles