Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.
"Sinopsis" puede pertenecer a otra edición de este libro.
Osvaldo A. Martin is a Researcher at IMASL-CONICET in Argentina and the Department of Computer Science from Aalto University in Finland. He has a PhD in biophysics and structural bioinformatics. Over the years he has become increasingly interested in data analysis problems with a Bayesian flavor. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling.
Ravin Kumar is a Data Scientist at Google and previously worked at SpaceX and sweetgreen among other companies. He has an M.S in Manufacturing Engineering and a B.S in Mechanical Engineering. He found Bayesian statistics to be an excellent tool for modeling organizations and informing strategy. This interest in flexible statistical modeling led to a warm welcoming open source community which he is honored to be a member of now.
Junpeng Lao is a Data Scientist at Google. Prior to that he did his PhD and subsequently worked as a postdoc in Cognitive Neuroscience. He developed a fondness for Bayesian Statistics and generative modeling after working primarily with Bootstrapping and Permutation during his academic life.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Evergreen Goodwill, Seattle, WA, Estados Unidos de America
hardcover. Condición: Good. Nº de ref. del artículo: mon0000330894
Cantidad disponible: 1 disponibles
Librería: Better World Books Ltd, Dunfermline, Reino Unido
Condición: Good. Ships from the UK. Used book that is in clean, average condition without any missing pages. Nº de ref. del artículo: 52604497-20
Cantidad disponible: 1 disponibles
Librería: Feldman's Books, Menlo Park, CA, Estados Unidos de America
Hardcover. Condición: Fine. 1st Edition. Nº de ref. del artículo: 045764
Cantidad disponible: 1 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
Hardcover. Condición: Fine. Nº de ref. del artículo: mon0002914410
Cantidad disponible: 3 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-TNFPD-9780367894368
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 43660608-n
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries. Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780367894368
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 43660608-n
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43660608
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580165700
Cantidad disponible: Más de 20 disponibles