Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
"Sinopsis" puede pertenecer a otra edición de este libro.
Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
Mickelsson (U. of Jyvaskyla, Finland) introduces the mathematical techniques of the modern theory of current algebras and groups, and explains a few physical applications illustrative of their uses. Assumes familiarity with the basic concepts of differentiable manifolds. Annotation copyright Book Ne
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 18,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 58 MIC 9780306433634 Sprache: Englisch Gewicht in Gramm: 1150. Nº de ref. del artículo: 2507828
Cantidad disponible: 1 disponibles
Librería: Small World Books, Rochester, NY, Estados Unidos de America
Hardcover. Condición: Good. Estado de la sobrecubierta: No D.J. 1st Edition. XUniversity of Rochester Library copy with barcode sticker on front cover, bookplate insede front cover and stamps on edges of pages. Text unmarked. Size: 8vo - 7¾" - 9¾. Nº de ref. del artículo: 064324
Cantidad disponible: 1 disponibles