Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
"Sinopsis" puede pertenecer a otra edición de este libro.
Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20179068-n
Cantidad disponible: 15 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030093012
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781475702972
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781475702972
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 20179068
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781475702972_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781475702972
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Let M be a smooth manifold and G a Lie group. In this book we shall study infinite-dimensional Lie algebras associated both to the group Map(M, G) of smooth mappings from M to G and to the group of dif feomorphisms of M. In the former case the Lie algebra of the group is the algebra Mg of smooth mappings from M to the Lie algebra gof G. In the latter case the Lie algebra is the algebra Vect M of smooth vector fields on M. However, it turns out that in many applications to field theory and statistical physics one must deal with certain extensions of the above mentioned Lie algebras. In the simplest case M is the unit circle SI, G is a simple finite dimensional Lie group and the central extension of Map( SI, g) is an affine Kac-Moody algebra. The highest weight theory of finite dimensional Lie algebras can be extended to the case of an affine Lie algebra. The important point is that Map(Sl, g) can be split to positive and negative Fourier modes and the finite-dimensional piece g corre sponding to the zero mode. 332 pp. Englisch. Nº de ref. del artículo: 9781475702972
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Plenum Monographs in Nonlinear Physics. Num Pages: 313 pages, black & white illustrations, bibliography. BIC Classification: PHU. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 18. Weight in Grams: 510. . 2013. Softcover reprint of the original 1st ed. 1989. Paperback. . . . . Nº de ref. del artículo: V9781475702972
Cantidad disponible: 15 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 332. Nº de ref. del artículo: 2697858408
Cantidad disponible: 4 disponibles