A comprehensive and cutting-edge introduction to quantitative methods of causal analysis, including new trends in machine learning.
Reasoning about cause and effect—the consequence of doing one thing versus another—is an integral part of our lives as human beings. In an increasingly digital and data-driven economy, the importance of sophisticated causal analysis only deepens. Presenting the most important quantitative methods for evaluating causal effects, this textbook provides graduate students and researchers with a clear and comprehensive introduction to the causal analysis of empirical data. Martin Huber’s accessible approach highlights the intuition and motivation behind various methods while also providing formal discussions of key concepts using statistical notation. Causal Analysis covers several methodological developments not covered in other texts, including new trends in machine learning, the evaluation of interaction or interference effects, and recent research designs such as bunching or kink designs.
"Sinopsis" puede pertenecer a otra edición de este libro.
Martin Huber is Professor of Applied Econometrics at the University of Fribourg, Switzerland, where his research comprises both methodological and applied contributions in the fields of causal analysis and policy evaluation, machine learning, statistics, econometrics, and empirical economics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,43 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Bellwetherbooks, McKeesport, PA, Estados Unidos de America
paperback. Condición: Fine. LIKE NEW!!! Has a red or black remainder mark on bottom/exterior edge of pages. Nº de ref. del artículo: 465446
Cantidad disponible: Más de 20 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Very Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or limited writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_446598681
Cantidad disponible: 1 disponibles
Librería: AMM Books, Gillingham, KENT, Reino Unido
paperback. Condición: Very Good. In stock ready to dispatch from the UK. Nº de ref. del artículo: mon0000299141
Cantidad disponible: 2 disponibles
Librería: Academic US, Piscataway, NJ, Estados Unidos de America
Condición: New. Brand New. Excellent Customer Service. Nº de ref. del artículo: 9780262545914
Cantidad disponible: 17 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 44950742-n
Cantidad disponible: 3 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9780262545914
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 44950742
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26395948156
Cantidad disponible: 3 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Nº de ref. del artículo: LU-9780262545914
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. A comprehensive and cutting-edge introduction to quantitative methods of causal analysis, including new trends in machine learning.A comprehensive and cutting-edge introduction to quantitative methods of causal analysis, including new trends in machine learning.Reasoning about cause and effect-the consequence of doing one thing versus another-is an integral part of our lives as human beings. In an increasingly digital and data-driven economy, the importance of sophisticated causal analysis only deepens. Presenting the most important quantitative methods for evaluating causal effects, this textbook provides graduate students and researchers with a clear and comprehensive introduction to the causal analysis of empirical data. Martin Huber's accessible approach highlights the intuition and motivation behind various methods while also providing formal discussions of key concepts using statistical notation. Causal Analysis covers several methodological developments not covered in other texts, including new trends in machine learning, the evaluation of interaction or interference effects, and recent research designs such as bunching or kink designs.Most complete and cutting-edge introduction to causal analysis, including causal machine learningClean presentation of rigorous material avoids extraneous detail and emphasizes conceptual analogies over statistical notationSupplies a range of applications and practical examples using R "A graduate-level textbook for causal inference/causal analysis in economics/econometrics courses"-- Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780262545914
Cantidad disponible: 1 disponibles