Robust Latent Feature Learning for Incomplete Big Data (Paperback)

Di Wu

ISBN 10: 9811981396 ISBN 13: 9789811981395
Editorial: Springer Verlag, Singapore, Singapore, 2022
Nuevos Paperback

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 12 de octubre de 2005

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Paperback. Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de ref. del artículo 9789811981395

Denunciar este artículo

Sinopsis:

Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.

In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.

Acerca del autor:

Dr. Di Wu received a Ph.D. degree in Computer Science from Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China, in 2019. He was a visiting scholar from April 2018 to April 2019 at the University of Louisiana, Lafayette, USA. Currently, he is a Professor at the College of Computer and Information Science, Southwest University. His current research interests include data mining, artificial intelligence, and big data. He has published over 50 papers, including 12 IEEE TRANSACTIONS papers, three highly cited paper of ESI, and several top-tier conferences such as AAAI, ICDM, WWW, and IJCAI, etc. His Google Scholar citations are more than 1800, and his H-Index is 23. He is an Associate Editor for Frontiers in Neurorobotics (SCI, IF 3.493). He received the Nomination Award for Excellent Doctoral Dissertation of the Chinese Association for Artificial Intelligence (CAAI).

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Robust Latent Feature Learning for ...
Editorial: Springer Verlag, Singapore, Singapore
Año de publicación: 2022
Encuadernación: Paperback
Condición: new
Edición: 1ª Edición

Los mejores resultados en AbeBooks

Imagen de archivo

Di Wu
Publicado por Springer Nature Singapore, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 40744189/1

Contactar al vendedor

Comprar usado

EUR 21,66
Convertir moneda
Gastos de envío: EUR 105,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Wu, Di
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and v. Nº de ref. del artículo: 738838663

Contactar al vendedor

Comprar nuevo

EUR 48,37
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Wu, Di
Publicado por Springer 2022-12, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9789811981395

Contactar al vendedor

Comprar nuevo

EUR 49,70
Convertir moneda
Gastos de envío: EUR 17,73
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu
Publicado por Springer Singapore, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Robust Latent Feature Learning for Incomplete Big Data | Di Wu | Taschenbuch | xiii | Englisch | 2022 | Springer Singapore | EAN 9789811981395 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 125727956

Contactar al vendedor

Comprar nuevo

EUR 50,10
Convertir moneda
Gastos de envío: EUR 70,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu, Di Wu
Publicado por Springer, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 45419619-n

Contactar al vendedor

Comprar nuevo

EUR 52,02
Convertir moneda
Gastos de envío: EUR 17,17
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Wu, Di
Publicado por Springer, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811981395_new

Contactar al vendedor

Comprar nuevo

EUR 52,03
Convertir moneda
Gastos de envío: EUR 13,71
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch. Nº de ref. del artículo: 9789811981395

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu
ISBN 10: 9811981396 ISBN 13: 9789811981395
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Incomplete big data are frequently encountered in many industrial applications, such as recommender systems, the Internet of Things, intelligent transportation, cloud computing, and so on. It is of great significance to analyze them for mining rich and valuable knowledge and patterns. Latent feature analysis (LFA) is one of the most popular representation learning methods tailored for incomplete big data due to its high accuracy, computational efficiency, and ease of scalability. The crux of analyzing incomplete big data lies in addressing the uncertainty problem caused by their incomplete characteristics. However, existing LFA methods do not fully consider such uncertainty.In this book, the author introduces several robust latent feature learning methods to address such uncertainty for effectively and efficiently analyzing incomplete big data, including robust latent feature learning based on smooth L1-norm, improving robustness of latent feature learningusing L1-norm, improving robustness of latent feature learning using double-space, data-characteristic-aware latent feature learning, posterior-neighborhood-regularized latent feature learning, and generalized deep latent feature learning. Readers can obtain an overview of the challenges of analyzing incomplete big data and how to employ latent feature learning to build a robust model to analyze incomplete big data. In addition, this book provides several algorithms and real application cases, which can help students, researchers, and professionals easily build their models to analyze incomplete big data. 128 pp. Englisch. Nº de ref. del artículo: 9789811981395

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu, Di Wu
Publicado por Springer, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45419619

Contactar al vendedor

Comprar usado

EUR 57,41
Convertir moneda
Gastos de envío: EUR 2,27
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Di Wu, Di Wu
Publicado por Springer, 2022
ISBN 10: 9811981396 ISBN 13: 9789811981395
Antiguo o usado Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45419619

Contactar al vendedor

Comprar usado

EUR 58,56
Convertir moneda
Gastos de envío: EUR 17,17
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 9 copia(s) de este libro

Ver todos los resultados de su búsqueda