Federated Learning (Paperback)

Qiang Yang

ISBN 10: 3030630757 ISBN 13: 9783030630751
Editorial: Springer Nature Switzerland AG, Cham, 2020
Nuevos Paperback

Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 12 de octubre de 2005

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Paperback. This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful. This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de ref. del artículo 9783030630751

Denunciar este artículo

Sinopsis:

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.

Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.

This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

 


De la contraportada: This book provides a comprehensive and self-contained introduction to Federated Learning, ranging from the basic knowledge and theories to various key applications, and the privacy and incentive factors are the focus of the whole book. This book is timely needed since Federated Learning is getting popular after the release of the General Data Protection Regulation (GDPR). As Federated Learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.

This book contains three main parts. First, it introduces different privacy-preserving methods for protecting a Federated Learning model against different types of attacks such as Data Leakage and/or Data Poisoning. Second, the book presents incentive mechanisms which aim to encourage individuals to participate in the Federated Learning ecosystems. Last but not the least, this book also describeshow Federated Learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both academia and industries, who would like to learn federated learning from scratch, practice its implementation, and apply it in their own business.

Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing are preferred.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Federated Learning (Paperback)
Editorial: Springer Nature Switzerland AG, Cham
Año de publicación: 2020
Encuadernación: Paperback
Condición: new
Edición: 1ª Edición

Los mejores resultados en AbeBooks

Imagen del vendedor

Yang, Qiang|Fan, Lixin|Yu, Han
Publicado por Springer International Publishing, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a comprehensive and self-contained introduction to Federated LearningPopular topic for GDPRCovers learning, implementation and practice of Federated LearningProvides a comprehensive and self-contained introduction to Fe. Nº de ref. del artículo: 417775895

Contactar al vendedor

Comprar nuevo

EUR 74,71
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Yang, Qiang
Publicado por Springer 2020-11, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783030630751

Contactar al vendedor

Comprar nuevo

EUR 74,95
Convertir moneda
Gastos de envío: EUR 17,77
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 42385911-n

Contactar al vendedor

Comprar nuevo

EUR 77,89
Convertir moneda
Gastos de envío: EUR 17,21
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783030630751_new

Contactar al vendedor

Comprar nuevo

EUR 78,48
Convertir moneda
Gastos de envío: EUR 13,74
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42385911

Contactar al vendedor

Comprar usado

EUR 83,34
Convertir moneda
Gastos de envío: EUR 2,27
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020024717

Contactar al vendedor

Comprar nuevo

EUR 84,89
Convertir moneda
Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Antiguo o usado Tapa blanda

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42385911

Contactar al vendedor

Comprar usado

EUR 85,52
Convertir moneda
Gastos de envío: EUR 17,21
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Qiang Yang
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, andneural network. Additionally, domain knowledge in FinTech and marketing would be helpful.' 296 pp. Englisch. Nº de ref. del artículo: 9783030630751

Contactar al vendedor

Comprar nuevo

EUR 85,59
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Qiang Yang
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications.Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR.This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.¿Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 296 pp. Englisch. Nº de ref. del artículo: 9783030630751

Contactar al vendedor

Comprar nuevo

EUR 85,59
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Yang, Qiang (EDT); Fan, Lixin (EDT); Yu, Han (EDT)
Publicado por Springer, 2020
ISBN 10: 3030630757 ISBN 13: 9783030630751
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 42385911-n

Contactar al vendedor

Comprar nuevo

EUR 86,08
Convertir moneda
Gastos de envío: EUR 2,27
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 6 copia(s) de este libro

Ver todos los resultados de su búsqueda