Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control

Brunton, Steven L.; J. Nathan Kutz

ISBN 10: 1108422098 ISBN 13: 9781108422093
Editorial: Cambridge University Press, 2019
Usado Hardcover

Librería: 3rd St. Books, Lees Summit, MO, Estados Unidos de America Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Vendedor de AbeBooks desde 9 de octubre de 2004

Este artículo en concreto ya no está disponible.

Descripción

Descripción:

Very good, clean, tight condition. Text free of marks. No marks to cover except for small paint flake off an edge of the spine. Professional book dealer since 1999. All orders are processed promptly and carefully packaged. N° de ref. del artículo 086045

Denunciar este artículo

Sinopsis:

Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art.

Acerca de los autores: Steven L. Brunton is Associate Professor of Mechanical Engineering at the University of Washington. He is also Adjunct Associate Professor of Applied Mathematics and a Data-Science Fellow at the eScience Institute. His research applies data science and machine learning for dynamical systems and control to fluid dynamics, biolocomotion, optics, energy systems, and manufacturing. He has co-authored two textbooks, received the Army and Air Force Young Investigator awards, and was awarded the University of Washington College of Education teaching award.

J. Nathan Kutz is the Robert Bolles and Yasuko Endo Professor of Applied Mathematics at the University of Washington, and served as department chair until 2015. He is also Adjunct Professor of Electrical Engineering and Physics and a Senior Data-Science Fellow at the eScience Institute. His research interests are in complex systems and data analysis where machine learning can be integrated with dynamical systems and control for a diverse set of applications. He is an author of two textbooks and has received the Applied Mathematics Boeing Award of Excellence in Teaching and an NSF CAREER award.

"Sobre este título" puede pertenecer a otra edición de este libro.

Detalles bibliográficos

Título: Data-Driven Science and Engineering: Machine...
Editorial: Cambridge University Press
Año de publicación: 2019
Encuadernación: Hardcover
Condición: Very Good
Edición: 1st Edition

Los mejores resultados en AbeBooks

Imagen del vendedor

Steven L. Brunton, J. Nathan Kutz
Publicado por Cambridge University Press, GB, 2019
ISBN 10: 1108422098 ISBN 13: 9781108422093
Nuevo Tapa dura Original o primera edición

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. 1st. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art. Nº de ref. del artículo: LU-9781108422093

Contactar al vendedor

Comprar nuevo

EUR 85,75
EUR 74,23 shipping
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Steven L. Brunton, J. Nathan Kutz
Publicado por Cambridge University Press, GB, 2019
ISBN 10: 1108422098 ISBN 13: 9781108422093
Nuevo Tapa dura Original o primera edición

Librería: Rarewaves.com USA, London, LONDO, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. 1st. Data-driven discovery is revolutionizing the modeling, prediction, and control of complex systems. This textbook brings together machine learning, engineering mathematics, and mathematical physics to integrate modeling and control of dynamical systems with modern methods in data science. It highlights many of the recent advances in scientific computing that enable data-driven methods to be applied to a diverse range of complex systems, such as turbulence, the brain, climate, epidemiology, finance, robotics, and autonomy. Aimed at advanced undergraduate and beginning graduate students in the engineering and physical sciences, the text presents a range of topics and methods from introductory to state of the art. Nº de ref. del artículo: LU-9781108422093

Contactar al vendedor

Comprar nuevo

EUR 90,98
Gastos de envío gratis
Se envía de Reino Unido a Estados Unidos de America

Cantidad disponible: Más de 20 disponibles

Añadir al carrito