Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 66,63
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 70,00
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 72,78
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 69,13
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 73,92
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
EUR 68,20
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 76,17
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
EUR 75,16
Cantidad disponible: 10 disponibles
Añadir al carritoCondición: New.
EUR 93,48
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 216 pages. 9.18x6.12x9.21 inches. In Stock.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 128,62
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 130,84
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 129,65
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
EUR 60,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Visual Object Tracking using Deep Learning | Ashish Kumar | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2025 | CRC Press | EAN 9781032598079 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
EUR 130,64
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 130,76
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
EUR 130,77
Cantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 138,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 180,02
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 272 pages. 9.19x6.13x0.71 inches. In Stock.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032598077 ISBN 13: 9781032598079
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 72,34
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also:Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methodsElaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexityIllustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenariosExplores the future research directions for visual tracking by analyzing the real-time applicationsThe book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology. The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 62,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also:Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methodsElaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexityIllustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenariosExplores the future research directions for visual tracking by analyzing the real-time applicationsThe book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology. 218 pp. Englisch.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032598077 ISBN 13: 9781032598079
Librería: CitiRetail, Stevenage, Reino Unido
EUR 80,74
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also:Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methodsElaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexityIllustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenariosExplores the future research directions for visual tracking by analyzing the real-time applicationsThe book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology. The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por Taylor & Francis Ltd, London, 2025
ISBN 10: 1032598077 ISBN 13: 9781032598079
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 100,09
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also:Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methodsElaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexityIllustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenariosExplores the future research directions for visual tracking by analyzing the real-time applicationsThe book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology. The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 70,31
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book covers the description of both conventional methods and advanced methods. In conventional methods, visual tracking techniques such as stochastic, deterministic, generative, and discriminative are discussed. The conventional techniques are further explored for multi-stage and collaborative frameworks. In advanced methods, various categories of deep learning-based trackers and correlation filter-based trackers are analyzed. The book also:Discusses potential performance metrics used for comparing the efficiency and effectiveness of various visual tracking methodsElaborates on the salient features of deep learning trackers along with traditional trackers, wherein the handcrafted features are fused to reduce computational complexityIllustrates various categories of correlation filter-based trackers suitable for superior and efficient performance under tedious tracking scenariosExplores the future research directions for visual tracking by analyzing the real-time applicationsThe book comprehensively discusses various deep learning-based tracking architectures along with conventional tracking methods. It covers in-depth analysis of various feature extraction techniques, evaluation metrics and benchmark available for performance evaluation of tracking frameworks. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer engineering, and information technology.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 133,70
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 143,96
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 135,14
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 150,63
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Librería: moluna, Greven, Alemania
EUR 113,56
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Dr. Ashish Kumar, Ph.D., is working as an assistant professor with Bennett University, Greater Noida, U.P., India. He has completed his Ph.D. in Computer Science and Engineering from Delhi Technological University (formerly DCE), New Delhi, India in 2020.
Librería: preigu, Osnabrück, Alemania
EUR 137,85
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Visual Object Tracking using Deep Learning | Ashish Kumar | Buch | Einband - fest (Hardcover) | Englisch | 2023 | CRC Press | EAN 9781032490533 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 164,75
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The text comprehensively discusses tracking architecture under stochastic and deterministic frameworks and presents experimental results under each framework with qualitative and quantitative analysis. It covers deep learning techniques for feature extraction, template matching, and training the networks in tracking algorithms.