Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 33,68
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 41,15
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 43,46
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 43,40
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 47,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 50,28
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Master Retrieval-Augmented Generation (RAG), the most popular generative AI tool, to unlock the full potential of your data. This book enables you to develop highly sought-after skills as corporate investment in generative AI soars.
Idioma: Inglés
Publicado por Packt Publishing Limited, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 51,43
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Packt Publishing Limited, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 46,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 53,57
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Master Retrieval-Augmented Generation (RAG), the most popular generative AI tool, to unlock the full potential of your data. This book enables you to develop highly sought-after skills as corporate investment in generative AI soars.
Idioma: Inglés
Publicado por Packt Publishing Limited, 2025
ISBN 10: 1806381656 ISBN 13: 9781806381654
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 58,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 45,74
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Idioma: Inglés
Publicado por Packt Publishing Limited, 2025
ISBN 10: 1806381656 ISBN 13: 9781806381654
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 51,57
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Idioma: Inglés
Publicado por Packt Publishing 9/27/2024, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 60,93
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Unlocking Data with Generative AI and RAG: Enhance generative AI systems by integrating internal data with large language models using RAG. Book.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 45,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 50,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 59,36
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: Brand New. In Stock.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 51,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Master Retrieval-Augmented Generation (RAG), the most popular generative AI tool, to unlock the full potential of your data. This book enables you to develop highly sought-after skills as corporate investment in generative AI soars.
Idioma: Inglés
Publicado por Packt Publishing Limited, GB, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: Rarewaves.com UK, London, Reino Unido
EUR 49,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Master Retrieval-Augmented Generation (RAG), the most popular generative AI tool, to unlock the full potential of your data. This book enables you to develop highly sought-after skills as corporate investment in generative AI soars.
Idioma: Inglés
Publicado por Packt Publishing Limited, Birmingham, 2025
ISBN 10: 1806381656 ISBN 13: 9781806381654
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 47,80
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Design intelligent AI agents with retrieval-augmented generation, memory components, and graph-based context integrationFree with your book: DRM-free PDF version + access to Packt's next-gen Reader*Key FeaturesBuild next-gen AI systems using agent memory, semantic caches, and LangMemImplement graph-based retrieval pipelines with ontologies and vector searchCreate intelligent, self-improving AI agents with agentic memory architecturesBook DescriptionDeveloping AI agents that remember, adapt, and reason over complex knowledge isnt a distant vision anymore; its happening now with Retrieval-Augmented Generation (RAG). This second edition of the bestselling guide leads you to the forefront of agentic system design, showing you how to build intelligent, explainable, and context-aware applications powered by RAG pipelines.Youll master the building blocks of agentic memory, including semantic caches, procedural learning with LangMem, and the emerging CoALA framework for cognitive agents. Youll also learn how to integrate GraphRAG with tools such as Neo4j to create deeply contextualized AI responses grounded in ontology-driven data.This book walks you through real implementations of working, episodic, semantic, and procedural memory using vector stores, prompting strategies, and feedback loops to create systems that continuously learn and refine their behavior. With hands-on code and production-ready patterns, youll be ready to build advanced AI systems that not only generate answers but also learn, recall, and evolve.Written by a seasoned AI educator and engineer, this book blends conceptual clarity with practical insight, offering both foundational knowledge and cutting-edge tools for modern AI development.*Email sign-up and proof of purchase requiredWhat you will learnArchitect graph-powered RAG agents with ontology-driven knowledge basesBuild semantic caches to improve response speed and reduce hallucinationsCode memory pipelines for working, episodic, semantic, and procedural recallImplement agentic learning using LangMem and prompt optimization strategiesIntegrate retrieval, generation, and consolidation for self-improving agentsDesign caching and memory schemas for scalable, adaptive AI systemsUse Neo4j, LangChain, and vector databases in production-ready RAG pipelinesWho this book is forIf youre an AI engineer, data scientist, or developer building agent-based AI systems, this book will guide you with its deep coverage of retrieval-augmented generation, memory components, and intelligent prompting. With a basic understanding of Python and LLMs, youll be able to make the most of what this book offers. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Idioma: Inglés
Publicado por Packt Publishing Limited, 2024
ISBN 10: 1835887902 ISBN 13: 9781835887905
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 52,74
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Idioma: Inglés
Publicado por Packt Publishing Limited, Birmingham, 2025
ISBN 10: 1806381656 ISBN 13: 9781806381654
Librería: CitiRetail, Stevenage, Reino Unido
EUR 56,84
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Design intelligent AI agents with retrieval-augmented generation, memory components, and graph-based context integrationFree with your book: DRM-free PDF version + access to Packt's next-gen Reader*Key FeaturesBuild next-gen AI systems using agent memory, semantic caches, and LangMemImplement graph-based retrieval pipelines with ontologies and vector searchCreate intelligent, self-improving AI agents with agentic memory architecturesBook DescriptionDeveloping AI agents that remember, adapt, and reason over complex knowledge isnt a distant vision anymore; its happening now with Retrieval-Augmented Generation (RAG). This second edition of the bestselling guide leads you to the forefront of agentic system design, showing you how to build intelligent, explainable, and context-aware applications powered by RAG pipelines.Youll master the building blocks of agentic memory, including semantic caches, procedural learning with LangMem, and the emerging CoALA framework for cognitive agents. Youll also learn how to integrate GraphRAG with tools such as Neo4j to create deeply contextualized AI responses grounded in ontology-driven data.This book walks you through real implementations of working, episodic, semantic, and procedural memory using vector stores, prompting strategies, and feedback loops to create systems that continuously learn and refine their behavior. With hands-on code and production-ready patterns, youll be ready to build advanced AI systems that not only generate answers but also learn, recall, and evolve.Written by a seasoned AI educator and engineer, this book blends conceptual clarity with practical insight, offering both foundational knowledge and cutting-edge tools for modern AI development.*Email sign-up and proof of purchase requiredWhat you will learnArchitect graph-powered RAG agents with ontology-driven knowledge basesBuild semantic caches to improve response speed and reduce hallucinationsCode memory pipelines for working, episodic, semantic, and procedural recallImplement agentic learning using LangMem and prompt optimization strategiesIntegrate retrieval, generation, and consolidation for self-improving agentsDesign caching and memory schemas for scalable, adaptive AI systemsUse Neo4j, LangChain, and vector databases in production-ready RAG pipelinesWho this book is forIf youre an AI engineer, data scientist, or developer building agent-based AI systems, this book will guide you with its deep coverage of retrieval-augmented generation, memory components, and intelligent prompting. With a basic understanding of Python and LLMs, youll be able to make the most of what this book offers. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Idioma: Inglés
Publicado por Packt Publishing Limited, Birmingham, 2025
ISBN 10: 1806381656 ISBN 13: 9781806381654
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 78,70
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Design intelligent AI agents with retrieval-augmented generation, memory components, and graph-based context integrationFree with your book: DRM-free PDF version + access to Packt's next-gen Reader*Key FeaturesBuild next-gen AI systems using agent memory, semantic caches, and LangMemImplement graph-based retrieval pipelines with ontologies and vector searchCreate intelligent, self-improving AI agents with agentic memory architecturesBook DescriptionDeveloping AI agents that remember, adapt, and reason over complex knowledge isnt a distant vision anymore; its happening now with Retrieval-Augmented Generation (RAG). This second edition of the bestselling guide leads you to the forefront of agentic system design, showing you how to build intelligent, explainable, and context-aware applications powered by RAG pipelines.Youll master the building blocks of agentic memory, including semantic caches, procedural learning with LangMem, and the emerging CoALA framework for cognitive agents. Youll also learn how to integrate GraphRAG with tools such as Neo4j to create deeply contextualized AI responses grounded in ontology-driven data.This book walks you through real implementations of working, episodic, semantic, and procedural memory using vector stores, prompting strategies, and feedback loops to create systems that continuously learn and refine their behavior. With hands-on code and production-ready patterns, youll be ready to build advanced AI systems that not only generate answers but also learn, recall, and evolve.Written by a seasoned AI educator and engineer, this book blends conceptual clarity with practical insight, offering both foundational knowledge and cutting-edge tools for modern AI development.*Email sign-up and proof of purchase requiredWhat you will learnArchitect graph-powered RAG agents with ontology-driven knowledge basesBuild semantic caches to improve response speed and reduce hallucinationsCode memory pipelines for working, episodic, semantic, and procedural recallImplement agentic learning using LangMem and prompt optimization strategiesIntegrate retrieval, generation, and consolidation for self-improving agentsDesign caching and memory schemas for scalable, adaptive AI systemsUse Neo4j, LangChain, and vector databases in production-ready RAG pipelinesWho this book is forIf youre an AI engineer, data scientist, or developer building agent-based AI systems, this book will guide you with its deep coverage of retrieval-augmented generation, memory components, and intelligent prompting. With a basic understanding of Python and LLMs, youll be able to make the most of what this book offers. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 61,73
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Leverage cutting-edge generative AI techniques such as RAG to realize the potential of your data and drive innovation as well as gain strategic advantageKey Features: Optimize data retrieval and generation using vector databases Boost decision-making and automate workflows with AI agents Overcome common challenges in implementing real-world RAG systems Purchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:Generative AI is helping organizations tap into their data in new ways, with retrieval-augmented generation (RAG) combining the strengths of large language models (LLMs) with internal data for more intelligent and relevant AI applications. The author harnesses his decade of ML experience in this book to equip you with the strategic insights and technical expertise needed when using RAG to drive transformative outcomes.The book explores RAG's role in enhancing organizational operations by blending theoretical foundations with practical techniques. You'll work with detailed coding examples using tools such as LangChain and Chroma's vector database to gain hands-on experience in integrating RAG into AI systems. The chapters contain real-world case studies and sample applications that highlight RAG's diverse use cases, from search engines to chatbots. You'll learn proven methods for managing vector databases, optimizing data retrieval, effective prompt engineering, and quantitatively evaluating performance. The book also takes you through advanced integrations of RAG with cutting-edge AI agents and emerging non-LLM technologies.By the end of this book, you'll be able to successfully deploy RAG in business settings, address common challenges, and push the boundaries of what's possible with this revolutionary AI technique.What You Will Learn: Understand RAG principles and their significance in generative AI Integrate LLMs with internal data for enhanced operations Master vectorization, vector databases, and vector search techniques Develop skills in prompt engineering specific to RAG and design for precise AI responses Familiarize yourself with AI agents' roles in facilitating sophisticated RAG applications Overcome scalability, data quality, and integration issues Discover strategies for optimizing data retrieval and AI interpretabilityWho this book is for:This book is for AI researchers, data scientists, software developers, and business analysts looking to leverage RAG and generative AI to enhance data retrieval, improve AI accuracy, and drive innovation. It is particularly suited for anyone with a foundational understanding of AI who seeks practical, hands-on learning. The book offers real-world coding examples and strategies for implementing RAG effectively, making it accessible to both technical and non-technical audiences. A basic understanding of Python and Jupyter Not Elektronisches Buch is required.Table of Contents What Is Retrieval-Augmented Generation (RAG) Code Lab - An Entire RAG Pipeline Practical Applications of RAG Components of a RAG System Managing Security in RAG Applications Interfacing with RAG and Gradio The Key Role Vectors and Vector Stores Play in RAG Similarity Searching with Vectors Evaluating RAG Quantitatively and with Visualizations Key RAG Components in LangChain Using LangChain to Get More from RAG Combining RAG with the Power of AI Agents and LangGraph Using Prompt Engineering to Improve RAG Efforts Advanced RAG-Related Techniques for Improving Results.
Librería: preigu, Osnabrück, Alemania
EUR 57,60
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Unlocking Data with Generative AI and RAG | Enhance generative AI systems by integrating internal data with large language models using RAG | Keith Bourne | Taschenbuch | Englisch | 2024 | Packt Publishing | EAN 9781835887905 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: preigu, Osnabrück, Alemania
EUR 64,95
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Unlocking Data with Generative AI and RAG - Second Edition | Learn AI agent fundamentals with RAG-powered memory, graph-based RAG, and intelligent recall | Keith Bourne | Taschenbuch | Englisch | 2025 | Packt Publishing | EAN 9781806381654 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 73,88
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Design intelligent AI agents with retrieval-augmented generation, memory components, and graph-based context integrationFree with your book: DRM-free PDF version + access to Packt's next-gen Reader\*Key Features: Build next-gen AI systems using agent memory, semantic caches, and LangMem Implement graph-based retrieval pipelines with ontologies and vector search Create intelligent, self-improving AI agents with agentic memory architecturesBook Description:Developing AI agents that remember, adapt, and reason over complex knowledge isn't a distant vision anymore; it's happening now with Retrieval-Augmented Generation (RAG). This second edition of the bestselling guide leads you to the forefront of agentic system design, showing you how to build intelligent, explainable, and context-aware applications powered by RAG pipelines.You'll master the building blocks of agentic memory, including semantic caches, procedural learning with LangMem, and the emerging CoALA framework for cognitive agents. You'll also learn how to integrate GraphRAG with tools such as Neo4j to create deeply contextualized AI responses grounded in ontology-driven data.This book walks you through real implementations of working, episodic, semantic, and procedural memory using vector stores, prompting strategies, and feedback loops to create systems that continuously learn and refine their behavior. With hands-on code and production-ready patterns, you'll be ready to build advanced AI systems that not only generate answers but also learn, recall, and evolve.Written by a seasoned AI educator and engineer, this book blends conceptual clarity with practical insight, offering both foundational knowledge and cutting-edge tools for modern AI development.\*Email sign-up and proof of purchase requiredWhat You Will Learn: Architect graph-powered RAG agents with ontology-driven knowledge bases Build semantic caches to improve response speed and reduce hallucinations Code memory pipelines for working, episodic, semantic, and procedural recall Implement agentic learning using LangMem and prompt optimization strategies Integrate retrieval, generation, and consolidation for self-improving agents Design caching and memory schemas for scalable, adaptive AI systems Use Neo4j, LangChain, and vector databases in production-ready RAG pipelinesWho this book is for:If you're an AI engineer, data scientist, or developer building agent-based AI systems, this book will guide you with its deep coverage of retrieval-augmented generation, memory components, and intelligent prompting. With a basic understanding of Python and LLMs, you'll be able to make the most of what this book offers.Table of Contents What is Retrieval-Augmented Generation Code Lab: An Entire RAG Pipeline Practical Applications of RAG Components of a RAG System Managing Security in RAG Applications Interfacing with RAG and Gradio The Key Role Vectors and Vector Stores Play in RAG Similarity Searching with Vectors Evaluating RAG Quantitatively and with Visualizations Key RAG Components in LangChain Using LangChain to Get More from RAG Combining RAG with the Power of AI Agents and LangGraph Ontology-Based Knowledge Engineering for Graphs Graph-Based RAG Semantic Caches Agentic Memory: Extending RAG with Stateful Intelligence RAG-Based Agentic Memory in Code Procedural Memory for RAG with LangMem Advanced RAG with Complete Memory Integration.