Publicado por Springer, 1991
Librería: mountain, GEORGETOWN, CO, Estados Unidos de America
EUR 18,80
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: Good. hardcover book, no dust jacket, light wear to book cover and book edges.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 161,23
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 157,72
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 157,72
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 159,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 159,10
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Kluwer Academic Publishers, Dordrecht, 1991
ISBN 10: 0792311175 ISBN 13: 9780792311171
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 179,78
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). The main purpose of these lectures is first to briefly survey the fundamental conA nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prodA ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
EUR 136,16
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
EUR 210,26
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. v + 261.
Publicado por Springer Netherlands, Springer Netherlands Jan 1991, 1991
ISBN 10: 0792311175 ISBN 13: 9780792311171
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 270 pp. Englisch.
Publicado por Springer Netherlands, Springer Netherlands, 2012
ISBN 10: 9401055149 ISBN 13: 9789401055147
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 165,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).
Publicado por Springer Netherlands, Springer Netherlands, 1991
ISBN 10: 0792311175 ISBN 13: 9780792311171
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 168,73
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).
EUR 231,40
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1990 edition. 261 pages. 9.25x6.10x0.61 inches. In Stock.
EUR 226,56
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
EUR 276,65
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Kluwer Academic Publishers, Dordrecht, 1991
ISBN 10: 0792311175 ISBN 13: 9780792311171
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 281,03
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). The main purpose of these lectures is first to briefly survey the fundamental conA nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prodA ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer Netherlands Sep 2012, 2012
ISBN 10: 9401055149 ISBN 13: 9789401055147
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). 268 pp. Englisch.
Publicado por Springer Netherlands Jan 1991, 1991
ISBN 10: 0792311175 ISBN 13: 9780792311171
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C). 270 pp. Englisch.
Publicado por Springer Netherlands, Springer Netherlands Sep 2012, 2012
ISBN 10: 9401055149 ISBN 13: 9789401055147
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 160,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The main purpose of these lectures is first to briefly survey the fundamental con nection between the representation theory of the symmetric group Sn and the theory of symmetric functions and second to show how combinatorial methods that arise naturally in the theory of symmetric functions lead to efficient algorithms to express various prod ucts of representations of Sn in terms of sums of irreducible representations. That is, there is a basic isometry which maps the center of the group algebra of Sn, Z(Sn), to the space of homogeneous symmetric functions of degree n, An. This basic isometry is known as the Frobenius map, F. The Frobenius map allows us to reduce calculations involving characters of the symmetric group to calculations involving Schur functions. Now there is a very rich and beautiful theory of the combinatorics of symmetric functions that has been developed in recent years. The combinatorics of symmetric functions, then leads to a number of very efficient algorithms for expanding various products of Schur functions into a sum of Schur functions. Such expansions of products of Schur functions correspond via the Frobenius map to decomposing various products of irreducible representations of Sn into their irreducible components. In addition, the Schur functions are also the characters of the irreducible polynomial representations of the general linear group over the complex numbers GLn(C).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 223,85
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. v + 261.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 227,79
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. v + 261.