Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 9,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
EUR 9,83
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Used book that is in clean, average condition without any missing pages.
Publicado por Springer-Verlag, New York, 1967
Librería: Xochi's Bookstore & Gallery, Truth or consequences, NM, Estados Unidos de America
EUR 29,16
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Near Fine. Estado de la sobrecubierta: Very Good. 1st, This Ed. 126pp.+advert; HB red w/blk.; slight rub w/PON,ft.endpaper; tan on endpapers w/clean,tight pgs. DJ pale yellow w/blk.; some rub w/spine sunned. "Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter." equations.
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 55,70
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. They are fundamental in parti cular to military weapons-selection problems involving large systems such as Minuteman or Polaris, where the systems in the mix are so large that they cannot be concealed from an opponent. One must then expect the opponent to determine on an optlmal mixture of, in the case men tioned above, anti-Minuteman and anti-submarine effort. The author's first introduction to a problem of Max-Min type occurred at The RAND Corporation about 1951. One side allocates anti-missile defenses to various cities. The other side observes this allocation and then allocates missiles to those cities. If F(x, y) denotes the total residual value of the cities after the attack, with x denoting the defender's strategy and y the attacker's, the problem is then to find Max MinF(x, y) = Max [MinF(x, y)] . Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,26
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 56,79
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,20
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,15
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 140.
Librería: NEPO UG, Rüsselsheim am Main, Alemania
EUR 19,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoGebundene Ausgabe. Condición: Gut. Sofort verfügbar Versand am folgenden Arbeitstag mit Rechnung daily shipping wordwide with invoice ex library aus Bibliothek Sprache: Deutsch Gewicht in Gramm: 550.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 75,80
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 140 pages. 9.25x6.10x0.40 inches. In Stock.
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer Berlin, 1967
Idioma: Inglés
Librería: ralfs-buecherkiste, Herzfelde, MOL, Alemania
EUR 3,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCloth. Condición: Gut. 126 Seiten Guter Zustand/ Good With figures. Ex-Library. ha1039712 Sprache: Englisch Gewicht in Gramm: 345.
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. They are fundamental in parti cular to military weapons-selection problems involving large systems such as Minuteman or Polaris, where the systems in the mix are so large that they cannot be concealed from an opponent. One must then expect the opponent to determine on an optlmal mixture of, in the case men tioned above, anti-Minuteman and anti-submarine effort. The author's first introduction to a problem of Max-Min type occurred at The RAND Corporation about 1951. One side allocates anti-missile defenses to various cities. The other side observes this allocation and then allocates missiles to those cities. If F(x, y) denotes the total residual value of the cities after the attack, with x denoting the defender's strategy and y the attacker's, the problem is then to find Max MinF(x, y) = Max [MinF(x, y)] .
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Berlin, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 100,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. They are fundamental in parti cular to military weapons-selection problems involving large systems such as Minuteman or Polaris, where the systems in the mix are so large that they cannot be concealed from an opponent. One must then expect the opponent to determine on an optlmal mixture of, in the case men tioned above, anti-Minuteman and anti-submarine effort. The author's first introduction to a problem of Max-Min type occurred at The RAND Corporation about 1951. One side allocates anti-missile defenses to various cities. The other side observes this allocation and then allocates missiles to those cities. If F(x, y) denotes the total residual value of the cities after the attack, with x denoting the defender's strategy and y the attacker's, the problem is then to find Max MinF(x, y) = Max [MinF(x, y)] . Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Springer, Springer Mär 2012, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. They are fundamental in parti cular to military weapons-selection problems involving large systems such as Minuteman or Polaris, where the systems in the mix are so large that they cannot be concealed from an opponent. One must then expect the opponent to determine on an optlmal mixture of, in the case men tioned above, anti-Minuteman and anti-submarine effort. The author's first introduction to a problem of Max-Min type occurred at The RAND Corporation about 1951. One side allocates anti-missile defenses to various cities. The other side observes this allocation and then allocates missiles to those cities. If F(x, y) denotes the total residual value of the cities after the attack, with x denoting the defender's strategy and y the attacker's, the problem is then to find Max MinF(x, y) = Max [MinF(x, y)] . 140 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 76,84
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 140 6 Figures, 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,07
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 140.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Mär 2012, 2012
ISBN 10: 3642460941 ISBN 13: 9783642460944
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Max-Min problems are two-step allocation problems in which one side must make his move knowing that the other side will then learn what the move is and optimally counter. They are fundamental in parti cular to military weapons-selection problems involving large systems such as Minuteman or Polaris, where the systems in the mix are so large that they cannot be concealed from an opponent. One must then expect the opponent to determine on an optlmal mixture of, in the case men tioned above, anti-Minuteman and anti-submarine effort. The author's first introduction to a problem of Max-Min type occurred at The RAND Corporation about 1951. One side allocates anti-missile defenses to various cities. The other side observes this allocation and then allocates missiles to those cities. If F(x, y) denotes the total residual value of the cities after the attack, with x denoting the defender's strategy and y the attacker's, the problem is then to find Max MinF(x, y) = Max [MinF(x, y)] .Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 140 pp. Englisch.