Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,71
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 53,54
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 65,07
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 57,11
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 60,08
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 78,35
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st edition. 266 pages. 9.75x6.75x0.50 inches. In Stock.
Publicado por Springer Vienna, Springer Vienna Feb 2001, 2001
ISBN 10: 3211835938 ISBN 13: 9783211835937
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented. 280 pp. Englisch.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,36
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 136,18
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 126,63
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 157,96
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer, 2001
Idioma: Inglés
Librería: Books in my Basket, New Delhi, India
EUR 107,05
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoN.A. Condición: New. ISBN:9783211835937.
Publicado por Springer Vienna Feb 2001, 2001
ISBN 10: 3211835938 ISBN 13: 9783211835937
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented. 280 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 48,37
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction (G. Alefeld, J. Rohn, S. Rump, T. Yamamoto).- Topological Concepts for Hierarchies of Variables, Types and Controls (R. Albrecht).- Modifications of the Oettli-Prager Theorem with Application to the Eigenvalue Problem (G. Alefeld, V. Kreinovich.