Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 27,46
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,64
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 62,01
Cantidad disponible: 2 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 67,38
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 66,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 56,35
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 71,71
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Publicado por Taylor & Francis Ltd, London, 2021
ISBN 10: 0367554194 ISBN 13: 9780367554194
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 79,85
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are. This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 65,79
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 64,81
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 185.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 62,76
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 66,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Taylor and Francis Ltd, GB, 2021
ISBN 10: 0367554194 ISBN 13: 9780367554194
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 84,46
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 81,48
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 75,68
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2021. 1st Edition. Paperback. . . . . .
Librería: Chiron Media, Wallingford, Reino Unido
EUR 72,64
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
EUR 77,06
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 392 pages. 9.21x6.14x0.91 inches. In Stock.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 80,61
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: New Book Sale, London, Reino Unido
EUR 41,03
Cantidad disponible: 1 disponibles
Añadir al carritoSoft cover. Condición: New. Usually Dispatched within 1-2 Business Days , Buy with confidence , excellent customer service.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 94,35
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. 2021. 1st Edition. Paperback. . . . . . Books ship from the US and Ireland.
EUR 57,95
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: NEW.
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 107,37
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Fine.
EUR 100,02
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 392 pages. 9.21x6.14x0.91 inches. In Stock.
EUR 72,39
Cantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Emil Hvitfeldt is a clinical data analyst working in healthcare, and an adjunct professor at American University where he is teaching statistical machine learning with tidymodels. He is also an open source R developer and author of the t.
Publicado por Chapman and Hall/CRC 2021-10-22, 2021
ISBN 10: 0367554186 ISBN 13: 9780367554187
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 128,07
Cantidad disponible: 5 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Taylor & Francis Ltd, London, 2021
ISBN 10: 0367554194 ISBN 13: 9780367554194
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 113,96
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are. This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
EUR 80,90
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Supervised Machine Learning for Text Analysis in R | Emil Hvitfeldt (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2021 | Chapman and Hall/CRC | EAN 9780367554194 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Publicado por Taylor and Francis Ltd, GB, 2021
ISBN 10: 0367554194 ISBN 13: 9780367554194
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 79,02
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing. This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 154,09
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 179,92
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.