Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 9,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 39,81
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 41,02
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 47,35
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 50,12
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
EUR 52,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Before you can build analytics tools to gain quick insights, you first need to know how to process data in real time. With this practical guide, developers familiar with Apache Spark will learn how to put this in-memory framework to use for streaming data. You'll discover how Spark enables you to write streaming jobs in almost the same way you write batch jobs. Authors Gerard Maas and François Garillot help you explore the theoretical underpinnings of Apache Spark. This comprehensive guide features two sections that compare and contrast the streaming APIs Spark now supports: the original Spark Streaming library and the newer Structured Streaming API. Learn fundamental stream processing concepts and examine different streaming architectures Explore Structured Streaming through practical examples; learn different aspects of stream processing in detail Create and operate streaming jobs and applications with Spark Streaming; integrate Spark Streaming with other Spark APIs Learn advanced Spark Streaming techniques, including approximation algorithms and machine learning algorithms Compare Apache Spark to other stream processing projects, including Apache Storm, Apache Flink, and Apache Kafka Streams.
EUR 50,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por O'Reilly Media, Inc, USA, 2019
ISBN 10: 1491944242 ISBN 13: 9781491944240
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 50,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 726.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 50,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 52,12
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 66,91
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. In.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 76,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. If you're familiar with Apache Spark and want to learn how to implement it for streaming jobs, this practical book is a must. Num Pages: 300 pages. BIC Classification: UYS; UYT; UYU. Category: (XV) Technical / Manuals. Dimension: 250 x 150 x 15. Weight in Grams: 666. . 2019. Paperback. . . . .
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 54,62
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Before you can build analytics tools to gain quick insights, you first need to know how to process data in real time. With this practical guide, developers familiar with Apache Spark will learn how to put this in-memory framework to use for streaming data. You'll discover how Spark enables you to write streaming jobs in almost the same way you write batch jobs. Authors Gerard Maas and François Garillot help you explore the theoretical underpinnings of Apache Spark. This comprehensive guide features two sections that compare and contrast the streaming APIs Spark now supports: the original Spark Streaming library and the newer Structured Streaming API. Learn fundamental stream processing concepts and examine different streaming architectures Explore Structured Streaming through practical examples; learn different aspects of stream processing in detail Create and operate streaming jobs and applications with Spark Streaming; integrate Spark Streaming with other Spark APIs Learn advanced Spark Streaming techniques, including approximation algorithms and machine learning algorithms Compare Apache Spark to other stream processing projects, including Apache Storm, Apache Flink, and Apache Kafka Streams.
Publicado por Oreilly & Associates Inc, 2019
ISBN 10: 1491944242 ISBN 13: 9781491944240
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 69,59
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 300 pages. 9.00x6.75x1.00 inches. In Stock.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 94,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. If you're familiar with Apache Spark and want to learn how to implement it for streaming jobs, this practical book is a must. Num Pages: 300 pages. BIC Classification: UYS; UYT; UYU. Category: (XV) Technical / Manuals. Dimension: 250 x 150 x 15. Weight in Grams: 666. . 2019. Paperback. . . . . Books ship from the US and Ireland.