Publicado por LAP LAMBERT Academic Publishing, 2009
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 57,40
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Stochatic Delay Difference and Differential Equations. | Stochatic Delay Difference and Differential Equations: Applications to Financial Markets | Catherine Swords (u. a.) | Taschenbuch | 180 S. | Englisch | 2009 | LAP LAMBERT Academic Publishing | EAN 9783838334752 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Publicado por LAP LAMBERT Academic Publishing Dez 2009, 2009
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 68,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The book deals with the asymptotic behaviour of stochastic difference and functional differential equations of Ito type. The equations have a form which make them suitable to model financial markets in which agents use past prices. The main results of the time sysyetms concern the almost sure largest fluctuations of the cumulative returns. These results are robust to the time-discretisation of the process and to the presence of non-linearities in the traders'' demand schedules. The conditions for, and dynamics in, a market experiencing a bubble or crash are also described. Numerical methods which both minimise error and preserve the features of the underlying continuous equation are studied and the methods are simulated on computer.Books on Demand GmbH, Überseering 33, 22297 Hamburg 180 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2010
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 142,55
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Publicado por LAP LAMBERT Academic Publishing Dez 2009, 2009
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 68,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book deals with the asymptotic behaviour of stochastic difference and functional differential equations of Ito type. The equations have a form which make them suitable to model financial markets in which agents use past prices. The main results of the time sysyetms concern the almost sure largest fluctuations of the cumulative returns. These results are robust to the time-discretisation of the process and to the presence of non-linearities in the traders' demand schedules. The conditions for, and dynamics in, a market experiencing a bubble or crash are also described. Numerical methods which both minimise error and preserve the features of the underlying continuous equation are studied and the methods are simulated on computer. 180 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2009
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 55,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book deals with the asymptotic behaviour of stochastic difference and functional differential equations of Ito type. The equations have a form which make them suitable to model financial markets in which agents use past prices. The main results of the t.
Publicado por LAP LAMBERT Academic Publishing, 2010
ISBN 10: 3838334752 ISBN 13: 9783838334752
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The book deals with the asymptotic behaviour of stochastic difference and functional differential equations of Ito type. The equations have a form which make them suitable to model financial markets in which agents use past prices. The main results of the time sysyetms concern the almost sure largest fluctuations of the cumulative returns. These results are robust to the time-discretisation of the process and to the presence of non-linearities in the traders' demand schedules. The conditions for, and dynamics in, a market experiencing a bubble or crash are also described. Numerical methods which both minimise error and preserve the features of the underlying continuous equation are studied and the methods are simulated on computer.