Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 31,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed. This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 29,38
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 303015016X ISBN 13: 9783030150167
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 34,60
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed. This book focuses on quantitative approximation results for weak limit theorems when the target limiting law is infinitely divisible with finite first moment. Two methods are presented and developed to obtain such quantitative results. At the root of these methods stands a Stein characterizing identity discussed in the third chapter and obtained thanks to a covariance representation of infinitely divisible distributions. The first method is based on characteristic functions and Stein type identities when the involved sequence of random variables is itself infinitely divisible with finite first moment. In particular, based on this technique, quantitative versions of compound Poisson approximation of infinitely divisible distributions are presented. The second method is a general Stein's method approach for univariate selfdecomposable laws with finite first moment. Chapter 6 is concerned with applications and provides general upper bounds to quantify the rate of convergence in classicalweak limit theorems for sums of independent random variables. This book is aimed at graduate students and researchers working in probability theory and mathematical statistics.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 25,16
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 75,87
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 104.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,45
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 77,33
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 104.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 79,16
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 104.