EUR 31,20
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 128 | Sprache: Englisch | Produktart: Bücher.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 47,64
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 39,44
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer India, Springer India, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 46,35
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 45,06
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 47,63
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 55,28
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2013 edition. 124 pages. 8.75x6.00x0.25 inches. In Stock.
Publicado por Springer (India) Private Limited, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 61,11
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 128.
Publicado por Springer India, Springer India Okt 2012, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 42,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 38,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 94,90
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 85,42
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 115,31
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Springer India Okt 2012, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 42,75
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This work is an overview of statistical inference in stationary, discrete time stochastic processes. Results in the last fifteen years, particularly on non-Gaussian sequences and semi-parametric and non-parametric analysis have been reviewed. The first chapter gives a background of results on martingales and strong mixing sequences, which enable us to generate various classes of CAN estimators in the case of dependent observations. Topics discussed include inference in Markov chains and extension of Markov chains such as Raftery's Mixture Transition Density model and Hidden Markov chains and extensions of ARMA models with a Binomial, Poisson, Geometric, Exponential, Gamma, Weibull, Lognormal, Inverse Gaussian and Cauchy as stationary distributions. It further discusses applications of semi-parametric methods of estimation such as conditional least squares and estimating functions in stochastic models. Construction of confidence intervals based on estimating functions is discussed in some detail. Kernel based estimation of joint density and conditional expectation are also discussed. Bootstrap and other resampling procedures for dependent sequences such as Markov chains, Markov sequences, linear auto-regressive moving average sequences, block based bootstrap for stationary sequences and other block based procedures are also discussed in some detail. This work can be useful for researchers interested in knowing developments in inference in discrete time stochastic processes. It can be used as a material for advanced level research students. 128 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 38,66
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The book deals with classical as well as most recent developments in the area of inference in discrete time stationary stochastic processes Topics discussed include Markov chains, non-Gaussian sequences, estimating function, density estimation and.
Publicado por Springer (India) Private Limited, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 62,96
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 128 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Publicado por Springer (India) Private Limited, 2012
ISBN 10: 8132207629 ISBN 13: 9788132207627
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 65,75
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 128.