Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3844329900 ISBN 13: 9783844329902
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 151,58
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: liu xing, Nanjing, JS, China
EUR 84,41
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritopaperback. Condición: New. Paperback. Pub Date: 2020-01-01 Pages: 180 Language: Chinese Publisher: People Post Press about the book is designed to test the method. process and agile project management. The book consists of five chapters. it focuses on how to design test cases. test plans. which should contain. how to write test plans. how to design test cases. how to achieve agility .
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3844329900 ISBN 13: 9783844329902
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 79,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Facing the growing complexity of car electronics, carmakers and automotive electronic suppliers are looking for efficient methods to develop, verify and validate electronic modules. In fact, they focus on the software part of these modules since it accounts for more than 80% of the total number of problems detected on these modules. In this context, we achieved our research project with the aim of proposing a global approach able to improve the quality of automotive embedded software. We started with an audit of the software practices currently used in automotive industry and we pinpointed potential levers to improve the global software quality. Based on the results of the audit and the literature review related to software quality, we developed a new Model-Based Testing approach in order to automatically generate test cases for a software product. This approach takes into account most of the automotive software constraints and context. The results of our experiments reveal significant improvement in software quality: more bugs are detected earlier and in less time.