Publicado por Cambridge University Press, 2020
Librería: BoundlessBookstore, Wallingford, Reino Unido
EUR 16,75
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Appears unread. Very good condition. Has light shelf wear.
Publicado por Cambridge University Press, 2020
Librería: BoundlessBookstore, Wallingford, Reino Unido
EUR 16,81
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Appears unread. Very good condition. Has light shelf wear.
Publicado por Cambridge University Press, 2020
Librería: BoundlessBookstore, Wallingford, Reino Unido
EUR 17,69
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Appears unread. Like new with light shelf wear.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 58,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 66,36
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press CUP, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 63,78
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 64,23
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, Cambridge, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 72,10
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter. The massive volume of data generated in modern applications requires the ability to build compact summaries of datasets. This introduction aimed at students and practitioners covers algorithms to describe massive data sets from simple sums to advanced probabilistic structures, with applications in big data, data science, and machine learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 64,83
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
EUR 88,31
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 270 pages. 9.00x6.00x0.75 inches. In Stock.
EUR 75,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. The massive volume of data generated in modern applications requires the ability to build compact summaries of datasets. This introduction aimed at students and practitioners covers algorithms to describe massive data sets from simple sums to advanced proba.
Publicado por Cambridge University Press Nov 2020, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 92,86
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 65,15
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Brand New. 270 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 67,11
Cantidad disponible: Más de 20 disponibles
Añadir al carritoHardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 510.
Publicado por Cambridge University Press, Cambridge, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 71,92
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter. The massive volume of data generated in modern applications requires the ability to build compact summaries of datasets. This introduction aimed at students and practitioners covers algorithms to describe massive data sets from simple sums to advanced probabilistic structures, with applications in big data, data science, and machine learning. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Cambridge University Press, Cambridge, 2020
ISBN 10: 1108477445 ISBN 13: 9781108477444
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 99,09
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. The massive volume of data generated in modern applications can overwhelm our ability to conveniently transmit, store, and index it. For many scenarios, building a compact summary of a dataset that is vastly smaller enables flexibility and efficiency in a range of queries over the data, in exchange for some approximation. This comprehensive introduction to data summarization, aimed at practitioners and students, showcases the algorithms, their behavior, and the mathematical underpinnings of their operation. The coverage starts with simple sums and approximate counts, building to more advanced probabilistic structures such as the Bloom Filter, distinct value summaries, sketches, and quantile summaries. Summaries are described for specific types of data, such as geometric data, graphs, and vectors and matrices. The authors offer detailed descriptions of and pseudocode for key algorithms that have been incorporated in systems from companies such as Google, Apple, Microsoft, Netflix and Twitter. The massive volume of data generated in modern applications requires the ability to build compact summaries of datasets. This introduction aimed at students and practitioners covers algorithms to describe massive data sets from simple sums to advanced probabilistic structures, with applications in big data, data science, and machine learning. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.