Publicado por Morgan & Claypool Publishers, 2013
ISBN 10: 1627051198 ISBN 13: 9781627051194
Idioma: Inglés
Librería: suffolkbooks, Center moriches, NY, Estados Unidos de America
EUR 17,57
Convertir monedaCantidad disponible: 8 disponibles
Añadir al carritopaperback. Condición: Very Good. Fast Shipping - Safe and Secure 7 days a week!
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 45,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 51,09
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
EUR 66,01
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Fine. 610 pp., Hardcover, previous owner's name to the front free endpaper, else fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 92,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 216.
Publicado por Springer International Publishing, Springer International Publishing Jan 2013, 2013
ISBN 10: 3031014073 ISBN 13: 9783031014079
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 35,30
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable.We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way.We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network.Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / SummarySpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 100 pp. Englisch.
Publicado por Springer International Publishing, Springer International Publishing, 2013
ISBN 10: 3031014073 ISBN 13: 9783031014079
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 35,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable.We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way.We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network.Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation.Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 99,92
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 94,52
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 216.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 103,46
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 97,60
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 216.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 109,94
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 110,43
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHRD. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Springer, Estados Unidos, 2001
ISBN 10: 0387951466 ISBN 13: 9780387951461
Idioma: Inglés
Librería: LIBRERÍA SOLÓN, Madrid, M, España
EUR 75,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTapa Dura. Condición: Bien. Colección 'Statistics for Engineering and Information Science'. Tapa dura. 168 ilustraciones.9780387951461. Springer. Estados Unidos. 2001. 24x16 centímetros. 581 páginas. Tapa dura. Estado=Bien. Inglés.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 101,09
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 118,54
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 112,14
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por John Wiley & Sons Inc, New York, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Original o primera edición
EUR 131,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problemsNumerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative errorA new generic sequential importance sampling algorithm alongside extensive numerical resultsAn appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods. This book presents the first comprehensive account of fast sequential Monte Carlo (SMC) methods for counting and optimization at an exceptionally accessible level. Written by authorities in the field, it places great emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 119,80
Convertir monedaCantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 128,62
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. New copy - Usually dispatched within 4 working days. 456.
Publicado por Wiley-Blackwell 2014-01-28, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 129,03
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por John Wiley & Sons Inc, New York, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
Original o primera edición
EUR 119,73
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problemsNumerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative errorA new generic sequential importance sampling algorithm alongside extensive numerical resultsAn appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods. This book presents the first comprehensive account of fast sequential Monte Carlo (SMC) methods for counting and optimization at an exceptionally accessible level. Written by authorities in the field, it places great emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por John Wiley and Sons Inc, US, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 152,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problemsNumerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative errorA new generic sequential importance sampling algorithm alongside extensive numerical resultsAn appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.
Publicado por John Wiley & Sons Inc, New York, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
Original o primera edición
EUR 123,15
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problemsNumerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative errorA new generic sequential importance sampling algorithm alongside extensive numerical resultsAn appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods. This book presents the first comprehensive account of fast sequential Monte Carlo (SMC) methods for counting and optimization at an exceptionally accessible level. Written by authorities in the field, it places great emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: moluna, Greven, Alemania
EUR 119,20
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoGebunden. Condición: New. REUVEN Y. RUBINSTEIN, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-fu.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 161,76
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 1st edition. 208 pages. 9.00x6.00x0.75 inches. In Stock.
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
EUR 190,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritohardcover. Condición: New. In shrink wrap. Looks like an interesting title!
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 182,84
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This book presents the first comprehensive account of fast sequential Monte Carlo (SMC) methods for counting and optimization at an exceptionally accessible level. Written by authorities in the field, it places great emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Series: Wiley Series in Probability and Statistics. Num Pages: 208 pages, Illustrations. BIC Classification: PBKS; PBT. Category: (P) Professional & Vocational. Dimension: 167 x 242 x 16. Weight in Grams: 426. . 2013. 1st Edition. Hardcover. . . . .
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 131,54
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - A comprehensive account of the theory and application of Monte Carlo methodsBased on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems.Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes:\* Detailed algorithms needed to practice solving real-world problems\* Numerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative error\* A new generic sequential importance sampling algorithm alongside extensive numerical results\* An appendix focused on review material to provide additional background informationFast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.
Publicado por John Wiley and Sons Inc, US, 2014
ISBN 10: 1118612264 ISBN 13: 9781118612262
Idioma: Inglés
Librería: Rarewaves.com UK, London, Reino Unido
EUR 143,92
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardback. Condición: New. A comprehensive account of the theory and application of Monte Carlo methods Based on years of research in efficient Monte Carlo methods for estimation of rare-event probabilities, counting problems, and combinatorial optimization, Fast Sequential Monte Carlo Methods for Counting and Optimization is a complete illustration of fast sequential Monte Carlo techniques. The book provides an accessible overview of current work in the field of Monte Carlo methods, specifically sequential Monte Carlo techniques, for solving abstract counting and optimization problems. Written by authorities in the field, the book places emphasis on cross-entropy, minimum cross-entropy, splitting, and stochastic enumeration. Focusing on the concepts and application of Monte Carlo techniques, Fast Sequential Monte Carlo Methods for Counting and Optimization includes: Detailed algorithms needed to practice solving real-world problemsNumerous examples with Monte Carlo method produced solutions within the 1-2% limit of relative errorA new generic sequential importance sampling algorithm alongside extensive numerical resultsAn appendix focused on review material to provide additional background information Fast Sequential Monte Carlo Methods for Counting and Optimization is an excellent resource for engineers, computer scientists, mathematicians, statisticians, and readers interested in efficient simulation techniques. The book is also useful for upper-undergraduate and graduate-level courses on Monte Carlo methods.