Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 59,98
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 65,77
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 56,31
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Fachbuch-Versandhandel, Freiburg, Alemania
EUR 72,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSpringer-Verlag, 2002, sehr guter Zustand, weltweiter Sofortversand aus Deutschland, Rechnung, HC.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 79,03
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. reprint edition. 296 pages. 9.25x6.10x0.70 inches. In Stock.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,92
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The Self-Organizing Map (SOM) is one of the most frequently used architectures for unsupervised artificial neural networks. Introduced by Teuvo Kohonen in the 1980s, SOMs have been developed as a very powerful method for visualization and unsupervised classification tasks by an active and innovative community of interna tional researchers. A number of extensions and modifications have been developed during the last two decades. The reason is surely not that the original algorithm was imperfect or inad equate. It is rather the universal applicability and easy handling of the SOM. Com pared to many other network paradigms, only a few parameters need to be arranged and thus also for a beginner the network leads to useful and reliable results. Never theless there is scope for improvements and sophisticated new developments as this book impressively demonstrates. The number of published applications utilizing the SOM appears to be unending. As the title of this book indicates, the reader will benefit from some of the latest the oretical developments and will become acquainted with a number of challenging real-world applications. Our aim in producing this book has been to provide an up to-date treatment of the field of self-organizing neural networks, which will be ac cessible to researchers, practitioners and graduated students from diverse disciplines in academics and industry. We are very grateful to the father of the SOMs, Professor Teuvo Kohonen for sup porting this book and contributing the first chapter.