Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 26,54
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 34,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 25,87
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 22,73
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 25,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 28,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 48,32
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
EUR 76,95
Cantidad disponible: 5 disponibles
Añadir al carritoPaperback or Softback. Condición: New. Regularized System Identification: Learning Dynamic Models from Data. Book.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 76,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, Springer International Publishing, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 42,79
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030958620 ISBN 13: 9783030958626
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 41,25
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Regularized System Identification | Learning Dynamic Models from Data | Gianluigi Pillonetto (u. a.) | Taschenbuch | xxiv | Englisch | 2022 | Springer International Publishing | EAN 9783030958626 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030958590 ISBN 13: 9783030958596
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 53,49
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 80,12
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 81,15
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer International Publishing, 2022
ISBN 10: 3030958590 ISBN 13: 9783030958596
Idioma: Inglés
Librería: preigu, Osnabrück, Alemania
EUR 50,35
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Regularized System Identification | Learning Dynamic Models from Data | Gianluigi Pillonetto (u. a.) | Buch | xxiv | Englisch | 2022 | Springer International Publishing | EAN 9783030958596 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.